{"title":"Multi-objective evolutionary algorithms for the truck dispatch problem in open-pit mining operations","authors":"R. F. Alexandre, F. Campelo, J. Vasconcelos","doi":"10.21528/lmln-vol17-no2-art5","DOIUrl":null,"url":null,"abstract":"This work is concerned with the efficient allocation of trucks to shovels in operation at open-pit mines. As this problem involves high-value assets, namely mining trucks and shovels, any improvement obtained in terms of operational efficiency can result in considerable financial savings. Thus, this work presents multi-objective strategies for solving the problem of dynamically allocating a heterogeneous fleet of trucks in an open-pit mining operation, aiming at maximizing production and minimizing costs, subject to a set of operational and physical constraints. Two Multi-objective Genetic Algorithms (MOGAs) were specially developed to address this problem: the first uses specialized crossover and mutation operators, while the second employs Path-Relinking as its main variation engine. Four test instances were constructed based on real open-pit mining scenarios, and used to validate the proposed methods. The two MOGAs were compared to each other and against a Greedy Heuristic (GH), suggesting of of the MOGAs as a potential strategy for solving the multi-objective truck dispatch problem for open-pit mining operations.","PeriodicalId":386768,"journal":{"name":"Learning and Nonlinear Models","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Learning and Nonlinear Models","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21528/lmln-vol17-no2-art5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
This work is concerned with the efficient allocation of trucks to shovels in operation at open-pit mines. As this problem involves high-value assets, namely mining trucks and shovels, any improvement obtained in terms of operational efficiency can result in considerable financial savings. Thus, this work presents multi-objective strategies for solving the problem of dynamically allocating a heterogeneous fleet of trucks in an open-pit mining operation, aiming at maximizing production and minimizing costs, subject to a set of operational and physical constraints. Two Multi-objective Genetic Algorithms (MOGAs) were specially developed to address this problem: the first uses specialized crossover and mutation operators, while the second employs Path-Relinking as its main variation engine. Four test instances were constructed based on real open-pit mining scenarios, and used to validate the proposed methods. The two MOGAs were compared to each other and against a Greedy Heuristic (GH), suggesting of of the MOGAs as a potential strategy for solving the multi-objective truck dispatch problem for open-pit mining operations.