Multi-objective evolutionary algorithms for the truck dispatch problem in open-pit mining operations

R. F. Alexandre, F. Campelo, J. Vasconcelos
{"title":"Multi-objective evolutionary algorithms for the truck dispatch problem in open-pit mining operations","authors":"R. F. Alexandre, F. Campelo, J. Vasconcelos","doi":"10.21528/lmln-vol17-no2-art5","DOIUrl":null,"url":null,"abstract":"This work is concerned with the efficient allocation of trucks to shovels in operation at open-pit mines. As this problem involves high-value assets, namely mining trucks and shovels, any improvement obtained in terms of operational efficiency can result in considerable financial savings. Thus, this work presents multi-objective strategies for solving the problem of dynamically allocating a heterogeneous fleet of trucks in an open-pit mining operation, aiming at maximizing production and minimizing costs, subject to a set of operational and physical constraints. Two Multi-objective Genetic Algorithms (MOGAs) were specially developed to address this problem: the first uses specialized crossover and mutation operators, while the second employs Path-Relinking as its main variation engine. Four test instances were constructed based on real open-pit mining scenarios, and used to validate the proposed methods. The two MOGAs were compared to each other and against a Greedy Heuristic (GH), suggesting of of the MOGAs as a potential strategy for solving the multi-objective truck dispatch problem for open-pit mining operations.","PeriodicalId":386768,"journal":{"name":"Learning and Nonlinear Models","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Learning and Nonlinear Models","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21528/lmln-vol17-no2-art5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

This work is concerned with the efficient allocation of trucks to shovels in operation at open-pit mines. As this problem involves high-value assets, namely mining trucks and shovels, any improvement obtained in terms of operational efficiency can result in considerable financial savings. Thus, this work presents multi-objective strategies for solving the problem of dynamically allocating a heterogeneous fleet of trucks in an open-pit mining operation, aiming at maximizing production and minimizing costs, subject to a set of operational and physical constraints. Two Multi-objective Genetic Algorithms (MOGAs) were specially developed to address this problem: the first uses specialized crossover and mutation operators, while the second employs Path-Relinking as its main variation engine. Four test instances were constructed based on real open-pit mining scenarios, and used to validate the proposed methods. The two MOGAs were compared to each other and against a Greedy Heuristic (GH), suggesting of of the MOGAs as a potential strategy for solving the multi-objective truck dispatch problem for open-pit mining operations.
露天矿卡车调度问题的多目标进化算法
这项工作是关于在露天矿山作业中卡车和铲子的有效分配。由于这个问题涉及高价值资产,即采矿卡车和铲子,因此在作业效率方面取得的任何改进都可以节省大量的财政开支。因此,这项工作提出了解决露天采矿作业中异构卡车车队动态分配问题的多目标策略,其目标是在一系列操作和物理约束下实现产量最大化和成本最小化。为了解决这一问题,专门开发了两种多目标遗传算法(MOGAs):第一种算法使用专门的交叉和突变算子,第二种算法采用path - relink作为主要的变异引擎。基于实际露天矿开采场景构建了4个测试实例,并对所提方法进行了验证。将这两种模型进行了比较,并与贪婪启发式算法(GH)进行了比较,提出了一种求解露天矿作业多目标卡车调度问题的潜在策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信