An Improved Rolling Horizon Evolution Algorithm with Shift Buffer for General Game Playing

Bruno Santos, H. Bernardino, E. Hauck
{"title":"An Improved Rolling Horizon Evolution Algorithm with Shift Buffer for General Game Playing","authors":"Bruno Santos, H. Bernardino, E. Hauck","doi":"10.1109/SBGAMES.2018.00013","DOIUrl":null,"url":null,"abstract":"General Game Playing (GGP) is the design of artificial intelligence programs to play more than one game. Here, one of the most famous GGP frameworks, The General Video Game AI Competition (GVGAI) Framework, is used in order to design controllers for Atari 2600 inspired games. Recent advancements in the literature of GVGAI showed that the Rolling Horizon Evolution Algorithm (RHEA) is competitive when compared to other methods, encouraging the use and the research by improvements for this method. The use of a 1-Step-Look-ahead approach and a Redundant Action Avoidance policy during the creation of new individuals are proposed in this paper. The 1-step-look-ahead technique improves the action selection after the shift of the individual in RHEA with the shift buffer enhancement (RHEA-SB), and the redundant action avoidance policy decreases the chance of spatial redundant actions within the individual. Also, a parameter analysis of RHEA-SB is performed here, where different values of population size, depth of simulations, and number of individuals that remains in the population are evaluated. Results show that using 1-Step-Look-ahead and a redundant action avoidance policy improves the quality of the solutions found when compared to the original algorithm.","PeriodicalId":170922,"journal":{"name":"2018 17th Brazilian Symposium on Computer Games and Digital Entertainment (SBGames)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 17th Brazilian Symposium on Computer Games and Digital Entertainment (SBGames)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SBGAMES.2018.00013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

General Game Playing (GGP) is the design of artificial intelligence programs to play more than one game. Here, one of the most famous GGP frameworks, The General Video Game AI Competition (GVGAI) Framework, is used in order to design controllers for Atari 2600 inspired games. Recent advancements in the literature of GVGAI showed that the Rolling Horizon Evolution Algorithm (RHEA) is competitive when compared to other methods, encouraging the use and the research by improvements for this method. The use of a 1-Step-Look-ahead approach and a Redundant Action Avoidance policy during the creation of new individuals are proposed in this paper. The 1-step-look-ahead technique improves the action selection after the shift of the individual in RHEA with the shift buffer enhancement (RHEA-SB), and the redundant action avoidance policy decreases the chance of spatial redundant actions within the individual. Also, a parameter analysis of RHEA-SB is performed here, where different values of population size, depth of simulations, and number of individuals that remains in the population are evaluated. Results show that using 1-Step-Look-ahead and a redundant action avoidance policy improves the quality of the solutions found when compared to the original algorithm.
一种改进的带移位缓冲的滚动地平线进化算法用于一般博弈
通用游戏(GGP)是人工智能程序的设计,可以玩多个游戏。这里,最著名的GGP框架之一,通用电子游戏AI竞赛(GVGAI)框架,被用来为Atari 2600启发的游戏设计控制器。GVGAI文献的最新进展表明,滚动地平线进化算法(RHEA)与其他方法相比具有竞争力,这鼓励了该方法的使用和改进研究。本文提出了在新个体创建过程中使用1- step -ahead方法和冗余动作避免策略。1步预瞄技术通过位移缓冲增强(RHEA- sb)提高了个体在移动后的动作选择,冗余动作回避策略降低了个体内部空间冗余动作的机会。此外,本文还对RHEA-SB进行了参数分析,其中评估了种群大小、模拟深度和种群中保留的个体数量的不同值。结果表明,与原算法相比,使用1步预判和冗余动作避免策略提高了解的质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信