Lagrange multiplier type tests for slope homogeneity in panel data models

IF 2.9 4区 经济学 Q1 ECONOMICS
Jörg Breitung, Christoph Roling, Nazarii Salish
{"title":"Lagrange multiplier type tests for slope homogeneity in panel data models","authors":"Jörg Breitung,&nbsp;Christoph Roling,&nbsp;Nazarii Salish","doi":"10.1111/ectj.12070","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>In this paper, we employ the Lagrange multiplier (LM) principle to test parameter homogeneity across cross-section units in panel data models. The test can be seen as a generalization of the Breusch–Pagan test against random individual effects to all regression coefficients. While the original test procedure assumes a likelihood framework under normality, several useful variants of the LM test are presented to allow for non-normality, heteroscedasticity and serially correlated errors. Moreover, the tests can be conveniently computed via simple artificial regressions. We derive the limiting distribution of the LM test and show that if the errors are not normally distributed, the original LM test is asymptotically valid if the number of time periods tends to infinity. A simple modification of the score statistic yields an LM test that is robust to non-normality if the number of time periods is fixed. Further adjustments provide versions of the LM test that are robust to heteroscedasticity and serial correlation. We compare the local power of our tests and the statistic proposed by Pesaran and Yamagata. The results of the Monte Carlo experiments suggest that the LM-type test can be substantially more powerful, in particular, when the number of time periods is small.</p></div>","PeriodicalId":50555,"journal":{"name":"Econometrics Journal","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2016-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1111/ectj.12070","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometrics Journal","FirstCategoryId":"96","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ectj.12070","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 15

Abstract

In this paper, we employ the Lagrange multiplier (LM) principle to test parameter homogeneity across cross-section units in panel data models. The test can be seen as a generalization of the Breusch–Pagan test against random individual effects to all regression coefficients. While the original test procedure assumes a likelihood framework under normality, several useful variants of the LM test are presented to allow for non-normality, heteroscedasticity and serially correlated errors. Moreover, the tests can be conveniently computed via simple artificial regressions. We derive the limiting distribution of the LM test and show that if the errors are not normally distributed, the original LM test is asymptotically valid if the number of time periods tends to infinity. A simple modification of the score statistic yields an LM test that is robust to non-normality if the number of time periods is fixed. Further adjustments provide versions of the LM test that are robust to heteroscedasticity and serial correlation. We compare the local power of our tests and the statistic proposed by Pesaran and Yamagata. The results of the Monte Carlo experiments suggest that the LM-type test can be substantially more powerful, in particular, when the number of time periods is small.

面板数据模型中斜率均匀性的拉格朗日乘数型检验
本文采用拉格朗日乘子(LM)原理来检验面板数据模型中横截面单元的参数同质性。该检验可以看作是针对所有回归系数的随机个体效应的布鲁希-帕甘检验的泛化。虽然最初的测试过程假设了正态性下的似然框架,但LM测试的几个有用变体被提出,以允许非正态性、异方差和序列相关误差。此外,测试可以方便地通过简单的人工回归计算。我们导出了LM检验的极限分布,并证明了当误差不是正态分布时,当周期数趋于无穷时,原始LM检验是渐近有效的。对分数统计量的简单修改产生一个LM测试,如果时间段数量固定,则该测试对非正态性具有鲁棒性。进一步的调整提供了对异方差和序列相关具有鲁棒性的LM检验版本。我们比较了我们测试的局部功率和Pesaran和Yamagata提出的统计量。蒙特卡罗实验的结果表明,lm类型的测试可以实质上更强大,特别是当时间周期的数量很少时。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Econometrics Journal
Econometrics Journal 管理科学-数学跨学科应用
CiteScore
4.20
自引率
5.30%
发文量
25
审稿时长
>12 weeks
期刊介绍: The Econometrics Journal was established in 1998 by the Royal Economic Society with the aim of creating a top international field journal for the publication of econometric research with a standard of intellectual rigour and academic standing similar to those of the pre-existing top field journals in econometrics. The Econometrics Journal is committed to publishing first-class papers in macro-, micro- and financial econometrics. It is a general journal for econometric research open to all areas of econometrics, whether applied, computational, methodological or theoretical contributions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信