Support Vector Machines Classification for High-Dimentional Dataset

Sipeng Wang
{"title":"Support Vector Machines Classification for High-Dimentional Dataset","authors":"Sipeng Wang","doi":"10.1109/MINES.2012.214","DOIUrl":null,"url":null,"abstract":"For improve classification accuracy, this paper discusses the problem of feature selection for high-dimensional data and SVM parameter optimization. An SVM classification system based on simulated annealing (SA) is proposed to improve the performance of the SVM classifier. The experiments are conducted on the basis of benchmark dataset. The obtained results confirm the superiority of the SA-SVM approach compared to default parameters SVM classifier, grid search SVM parameter approach and suggest that further substantial improvements in terms of classification accuracy can be achieved by the proposed SA-SVM classification technique.","PeriodicalId":208089,"journal":{"name":"2012 Fourth International Conference on Multimedia Information Networking and Security","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Fourth International Conference on Multimedia Information Networking and Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MINES.2012.214","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

For improve classification accuracy, this paper discusses the problem of feature selection for high-dimensional data and SVM parameter optimization. An SVM classification system based on simulated annealing (SA) is proposed to improve the performance of the SVM classifier. The experiments are conducted on the basis of benchmark dataset. The obtained results confirm the superiority of the SA-SVM approach compared to default parameters SVM classifier, grid search SVM parameter approach and suggest that further substantial improvements in terms of classification accuracy can be achieved by the proposed SA-SVM classification technique.
高维数据集的支持向量机分类
为了提高分类精度,本文讨论了高维数据的特征选择和支持向量机参数优化问题。为了提高SVM分类器的性能,提出了一种基于模拟退火(SA)的SVM分类系统。实验在基准数据集的基础上进行。得到的结果证实了SA-SVM方法相对于默认参数SVM分类器、网格搜索SVM参数方法的优越性,并表明本文提出的SA-SVM分类技术在分类精度方面可以得到进一步的大幅度提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信