{"title":"Transfer Learning and Sentence Level Features for Named Entity Recognition on Tweets","authors":"Pius von Däniken, Mark Cieliebak","doi":"10.18653/v1/W17-4422","DOIUrl":null,"url":null,"abstract":"We present our system for the WNUT 2017 Named Entity Recognition challenge on Twitter data. We describe two modifications of a basic neural network architecture for sequence tagging. First, we show how we exploit additional labeled data, where the Named Entity tags differ from the target task. Then, we propose a way to incorporate sentence level features. Our system uses both methods and ranked second for entity level annotations, achieving an F1-score of 40.78, and second for surface form annotations, achieving an F1-score of 39.33.","PeriodicalId":207795,"journal":{"name":"NUT@EMNLP","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"40","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NUT@EMNLP","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/W17-4422","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 40
Abstract
We present our system for the WNUT 2017 Named Entity Recognition challenge on Twitter data. We describe two modifications of a basic neural network architecture for sequence tagging. First, we show how we exploit additional labeled data, where the Named Entity tags differ from the target task. Then, we propose a way to incorporate sentence level features. Our system uses both methods and ranked second for entity level annotations, achieving an F1-score of 40.78, and second for surface form annotations, achieving an F1-score of 39.33.