Depth map up-sampling using cost-volume filtering

Ji-Ho Cho, Satoshi Ikehata, H. Yoo, M. Gelautz, K. Aizawa
{"title":"Depth map up-sampling using cost-volume filtering","authors":"Ji-Ho Cho, Satoshi Ikehata, H. Yoo, M. Gelautz, K. Aizawa","doi":"10.1109/IVMSPW.2013.6611912","DOIUrl":null,"url":null,"abstract":"Depth maps captured by active sensors (e.g., ToF cameras and Kinect) typically suffer from poor spatial resolution, considerable amount of noise, and missing data. To overcome these problems, we propose a novel depth map up-sampling method which increases the resolution of the original depth map while effectively suppressing aliasing artifacts. Assuming that a registered high-resolution texture image is available, the cost-volume filtering framework is applied to this problem. Our experiments show that cost-volume filtering can generate the high-resolution depth map accurately and efficiently while preserving discontinuous object boundaries, which is often a challenge when various state-of-the-art algorithms are applied.","PeriodicalId":170714,"journal":{"name":"IVMSP 2013","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IVMSP 2013","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVMSPW.2013.6611912","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Depth maps captured by active sensors (e.g., ToF cameras and Kinect) typically suffer from poor spatial resolution, considerable amount of noise, and missing data. To overcome these problems, we propose a novel depth map up-sampling method which increases the resolution of the original depth map while effectively suppressing aliasing artifacts. Assuming that a registered high-resolution texture image is available, the cost-volume filtering framework is applied to this problem. Our experiments show that cost-volume filtering can generate the high-resolution depth map accurately and efficiently while preserving discontinuous object boundaries, which is often a challenge when various state-of-the-art algorithms are applied.
使用成本-体积滤波的深度图上采样
由主动传感器(如ToF相机和Kinect)捕获的深度图通常存在空间分辨率差、大量噪声和数据缺失的问题。为了克服这些问题,我们提出了一种新的深度图上采样方法,该方法在有效抑制混叠伪影的同时提高了原始深度图的分辨率。假设有配准的高分辨率纹理图像,将代价-体积滤波框架应用于该问题。我们的实验表明,成本-体积滤波可以准确有效地生成高分辨率深度图,同时保留不连续的目标边界,这是应用各种最先进算法时经常遇到的挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信