Predicting Essential Genes of Escherichia coli based on Clustering Method

Xiao Liu, Ting He, Zhirui Guo, Meixiang Ren
{"title":"Predicting Essential Genes of Escherichia coli based on Clustering Method","authors":"Xiao Liu, Ting He, Zhirui Guo, Meixiang Ren","doi":"10.1145/3340074.3340080","DOIUrl":null,"url":null,"abstract":"Essential genes are important to the survival or reproduction of organisms. Computational methods for predicting essential genes are mainly supervised classification methods. These methods need label information of genes which the newly sequenced genes are absence. This encourages us to use unsupervised methods to predict essential genes. Here, the K-means clustering algorithm was used to predict the essential genes of Escherichia coli after the Relief algorithm was used to weight the features. A membership calculation method based on Euclidean distance between genes was designed to get AUC (area under curve) score. The average AUC score was 0.989. This research enables a satisfied prediction of essential genes.","PeriodicalId":196396,"journal":{"name":"Proceedings of the 2019 11th International Conference on Bioinformatics and Biomedical Technology","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2019 11th International Conference on Bioinformatics and Biomedical Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3340074.3340080","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Essential genes are important to the survival or reproduction of organisms. Computational methods for predicting essential genes are mainly supervised classification methods. These methods need label information of genes which the newly sequenced genes are absence. This encourages us to use unsupervised methods to predict essential genes. Here, the K-means clustering algorithm was used to predict the essential genes of Escherichia coli after the Relief algorithm was used to weight the features. A membership calculation method based on Euclidean distance between genes was designed to get AUC (area under curve) score. The average AUC score was 0.989. This research enables a satisfied prediction of essential genes.
基于聚类方法的大肠杆菌必需基因预测
基本基因对生物体的生存或繁殖是重要的。基本基因预测的计算方法主要是监督分类法。这些方法需要对新测序基因中缺失的基因进行标记。这鼓励我们使用无监督的方法来预测基本基因。在这里,在使用Relief算法对特征进行加权后,使用K-means聚类算法来预测大肠杆菌的必需基因。设计了一种基于基因间欧几里得距离的隶属度计算方法,得到曲线下面积(AUC)评分。平均AUC得分为0.989。这项研究能够令人满意地预测必需基因。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信