Classification of Land Cover Usage from Satellite Images using Deep Learning Algorithms

D. R. Rao, S. Noorjahan, Shaik Ayesha Fathima
{"title":"Classification of Land Cover Usage from Satellite Images using Deep Learning Algorithms","authors":"D. R. Rao, S. Noorjahan, Shaik Ayesha Fathima","doi":"10.1109/ICEARS53579.2022.9752282","DOIUrl":null,"url":null,"abstract":"Earth's environment and its evolution can be seen through satellite images in near real time. Through satellite imagery, remote sensing data provides crucial information that can be used for a variety of applications, including image fusion, change detection, land cover classification, agriculture, mining, disaster mitigation, and monitoring climate change. The objective of this project is to propose a method for classifying satellite images according to multiple predefined land cover classes. The proposed approach involves collecting data in image format. The data is then preprocessed using data preprocessing techniques. The processed data is fed into the proposed algorithm and the obtained result is analyzed. Some of the algorithms used in satellite imagery classification are U-Net, Random Forest, Deep Labv3, CNN (Convolutional Neural Network), ANN(Artificial neural network), Resnet etc. In this project, DeepLabv3 (Atrous convolution) algorithm is used for land cover classification. The dataset used is the deep globe land cover classification dataset. DeepLabv3 is a semantic segmentation system that uses atrous convolution to capture multi-scale context by adopting multiple atrous rates in cascade or in parallel to determine the scale of segments.","PeriodicalId":252961,"journal":{"name":"2022 International Conference on Electronics and Renewable Systems (ICEARS)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Electronics and Renewable Systems (ICEARS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEARS53579.2022.9752282","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Earth's environment and its evolution can be seen through satellite images in near real time. Through satellite imagery, remote sensing data provides crucial information that can be used for a variety of applications, including image fusion, change detection, land cover classification, agriculture, mining, disaster mitigation, and monitoring climate change. The objective of this project is to propose a method for classifying satellite images according to multiple predefined land cover classes. The proposed approach involves collecting data in image format. The data is then preprocessed using data preprocessing techniques. The processed data is fed into the proposed algorithm and the obtained result is analyzed. Some of the algorithms used in satellite imagery classification are U-Net, Random Forest, Deep Labv3, CNN (Convolutional Neural Network), ANN(Artificial neural network), Resnet etc. In this project, DeepLabv3 (Atrous convolution) algorithm is used for land cover classification. The dataset used is the deep globe land cover classification dataset. DeepLabv3 is a semantic segmentation system that uses atrous convolution to capture multi-scale context by adopting multiple atrous rates in cascade or in parallel to determine the scale of segments.
利用深度学习算法从卫星图像中分类土地覆盖
地球的环境及其演变可以通过卫星图像近实时地看到。通过卫星图像,遥感数据提供了关键信息,可用于各种应用,包括图像融合、变化检测、土地覆盖分类、农业、采矿、减灾和监测气候变化。该项目的目标是提出一种根据多个预定义的土地覆盖类别对卫星图像进行分类的方法。所提出的方法包括以图像格式收集数据。然后使用数据预处理技术对数据进行预处理。将处理后的数据输入到该算法中,并对得到的结果进行分析。目前用于卫星图像分类的算法有U-Net、Random Forest、Deep Labv3、CNN(卷积神经网络)、ANN(人工神经网络)、Resnet等。在本项目中,使用DeepLabv3(亚特劳斯卷积)算法进行土地覆盖分类。使用的数据集是深全球土地覆盖分类数据集。DeepLabv3是一种语义分割系统,它使用属性卷积捕获多尺度上下文,采用级联或并行的多个属性率来确定段的尺度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信