The formation algorithm of errors models for satellite navigation systems and correction algorithm for aircraft navigation systems

{"title":"The formation algorithm of errors models for satellite navigation systems and correction algorithm for aircraft navigation systems","authors":"","doi":"10.36652/0869-4931-2022-76-3-120-126","DOIUrl":null,"url":null,"abstract":"An aircraft navigation complex as a part of an inertial navigation system, a satellite navigation system and an adaptive nonlinear Kalman filter is considered. In the Kalman filter, when the estimation process diverges, the model is constructed using an evolutionary algorithm. The used divergence indicators analyze the measured signals; the directly unmeasured state variables are not examined. A divergence criterion of directly unmeasured state variables is proposed on the grounds of the reduced measurements and the variances of the reduced measurement noises. The algorithm modification effectiveness is demonstrated by using the flight experiment data.\n\nKeywords\nnavigation complex, adaptive nonlinear Kalman filter, divergence indicator, reduced measurements, flight experiment data","PeriodicalId":309803,"journal":{"name":"Automation. Modern Techologies","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automation. Modern Techologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36652/0869-4931-2022-76-3-120-126","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

An aircraft navigation complex as a part of an inertial navigation system, a satellite navigation system and an adaptive nonlinear Kalman filter is considered. In the Kalman filter, when the estimation process diverges, the model is constructed using an evolutionary algorithm. The used divergence indicators analyze the measured signals; the directly unmeasured state variables are not examined. A divergence criterion of directly unmeasured state variables is proposed on the grounds of the reduced measurements and the variances of the reduced measurement noises. The algorithm modification effectiveness is demonstrated by using the flight experiment data. Keywords navigation complex, adaptive nonlinear Kalman filter, divergence indicator, reduced measurements, flight experiment data
卫星导航系统误差模型的形成算法和飞机导航系统误差模型的修正算法
考虑了飞机导航综合体作为惯性导航系统、卫星导航系统和自适应非线性卡尔曼滤波器的组成部分。在卡尔曼滤波中,当估计过程发散时,采用进化算法构建模型。使用散度指标分析测量信号;不检查直接未测量的状态变量。基于测量值的约化和测量噪声的方差,提出了直接不可测状态变量的散度判据。通过飞行实验数据验证了该算法的有效性。关键词导航复杂,自适应非线性卡尔曼滤波,散度指示器,约化测量,飞行实验数据
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信