Gauss-Markov models for forecasting and risk evaluation

Y. K. Wong, A. Rad
{"title":"Gauss-Markov models for forecasting and risk evaluation","authors":"Y. K. Wong, A. Rad","doi":"10.1109/EMPD.1998.705539","DOIUrl":null,"url":null,"abstract":"In power systems, expansion of generating and transmission facilities, day-to-day operation are dependent on the future loading demands. Load uncertainty can be modeled using the Gauss-Markov properties for a random process. Sharing the Gauss-Markov characteristics, Box-Jenkins (ARIMA) forecast procedure is described. Then, electricity consumption data is simulated as an application of ARIMA models. Finally, a risk evaluation study using a Gauss-Markov load model is also demonstrated.","PeriodicalId":434526,"journal":{"name":"Proceedings of EMPD '98. 1998 International Conference on Energy Management and Power Delivery (Cat. No.98EX137)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of EMPD '98. 1998 International Conference on Energy Management and Power Delivery (Cat. No.98EX137)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EMPD.1998.705539","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

In power systems, expansion of generating and transmission facilities, day-to-day operation are dependent on the future loading demands. Load uncertainty can be modeled using the Gauss-Markov properties for a random process. Sharing the Gauss-Markov characteristics, Box-Jenkins (ARIMA) forecast procedure is described. Then, electricity consumption data is simulated as an application of ARIMA models. Finally, a risk evaluation study using a Gauss-Markov load model is also demonstrated.
用于预测和风险评估的高斯-马尔可夫模型
在电力系统中,发电和输电设施的扩建、日常运行都取决于未来的负荷需求。负荷不确定性可以用随机过程的高斯-马尔可夫性质来建模。分享高斯-马尔科夫特征,描述Box-Jenkins (ARIMA)预测过程。然后,利用ARIMA模型对电力消费数据进行仿真。最后,利用高斯-马尔可夫负荷模型进行了风险评估研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信