Progressive Semantic Image Synthesis via Generative Adversarial Network

Ke Yue, Yidong Li, Huifang Li
{"title":"Progressive Semantic Image Synthesis via Generative Adversarial Network","authors":"Ke Yue, Yidong Li, Huifang Li","doi":"10.1109/VCIP47243.2019.8966069","DOIUrl":null,"url":null,"abstract":"Semantic image synthesis via text description is a desirable and challenging task, which requires more protection of the text irrelevant content in the original image. Existing methods directly modify the original image, which become more difficult when encountering high resolution image, and the generated images are also blurred and lack in detail. This paper presents a novel network architecture to progressively manipulate an image starting from low-resolution, while introducing the original image of corresponding size at different stages with our proposed union module to avoid losing of detail. And the progressive design of the network allows us to modify the image from coarse into fine. Compared with the previous methods, our new method can successfully manipulate a high resolution image and generate a new image with background protection and fine details. The experimental results on CUB-200-2011 dataset show that the proposed approach outperforms existing methods in terms of image detail, background protection and high resolution generation.","PeriodicalId":388109,"journal":{"name":"2019 IEEE Visual Communications and Image Processing (VCIP)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Visual Communications and Image Processing (VCIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VCIP47243.2019.8966069","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Semantic image synthesis via text description is a desirable and challenging task, which requires more protection of the text irrelevant content in the original image. Existing methods directly modify the original image, which become more difficult when encountering high resolution image, and the generated images are also blurred and lack in detail. This paper presents a novel network architecture to progressively manipulate an image starting from low-resolution, while introducing the original image of corresponding size at different stages with our proposed union module to avoid losing of detail. And the progressive design of the network allows us to modify the image from coarse into fine. Compared with the previous methods, our new method can successfully manipulate a high resolution image and generate a new image with background protection and fine details. The experimental results on CUB-200-2011 dataset show that the proposed approach outperforms existing methods in terms of image detail, background protection and high resolution generation.
基于生成对抗网络的渐进式语义图像合成
通过文本描述进行语义图像合成是一项令人向往且具有挑战性的任务,它需要更多地保护原始图像中与文本无关的内容。现有的方法直接对原始图像进行修改,在遇到高分辨率图像时变得更加困难,生成的图像也模糊不清,缺乏细节。本文提出了一种新的网络结构,从低分辨率开始逐步处理图像,同时在不同阶段引入相应大小的原始图像,并使用我们提出的联合模块来避免细节丢失。网络的渐进式设计使我们可以将图像从粗糙修改为精细。与以前的方法相比,我们的方法可以成功地处理高分辨率图像,并生成具有背景保护和精细细节的新图像。在CUB-200-2011数据集上的实验结果表明,该方法在图像细节、背景保护和高分辨率生成方面优于现有方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信