Blind Source Separation with L1 Regularized Sparse Autoencoder

J. Dabin, A. Haimovich, Justin Mauger, Annan Dong
{"title":"Blind Source Separation with L1 Regularized Sparse Autoencoder","authors":"J. Dabin, A. Haimovich, Justin Mauger, Annan Dong","doi":"10.1109/WOCC48579.2020.9114943","DOIUrl":null,"url":null,"abstract":"Blind source separation of co-channel communication signals can be performed by structuring the problem with an over-complete dictionary of the channel and solving for the sparse coefficients, which represent the latent transmitted signals. $L_{1}$ regularized least squares is a common approach to imposing sparsity on the latent signal representation while minimizing the reconstruction error. In this paper we propose an unsupervised learning approach for blind source separation using an $L_{1}$ regularized sparse autoencoder with a softthreshold activation function at the hidden layer that is able to separate and fully recover multiple overlapping binary phase shift keying co-channel signals.","PeriodicalId":187607,"journal":{"name":"2020 29th Wireless and Optical Communications Conference (WOCC)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 29th Wireless and Optical Communications Conference (WOCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WOCC48579.2020.9114943","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Blind source separation of co-channel communication signals can be performed by structuring the problem with an over-complete dictionary of the channel and solving for the sparse coefficients, which represent the latent transmitted signals. $L_{1}$ regularized least squares is a common approach to imposing sparsity on the latent signal representation while minimizing the reconstruction error. In this paper we propose an unsupervised learning approach for blind source separation using an $L_{1}$ regularized sparse autoencoder with a softthreshold activation function at the hidden layer that is able to separate and fully recover multiple overlapping binary phase shift keying co-channel signals.
基于L1正则化稀疏自编码器的盲源分离
通过用信道的过完备字典来构造问题,求解代表潜在传输信号的稀疏系数,可以实现同信道通信信号的盲源分离。$L_{1}$正则化最小二乘是一种对潜在信号表示施加稀疏性同时最小化重构误差的常用方法。在本文中,我们提出了一种无监督学习的盲源分离方法,该方法使用$L_{1}$正则化稀疏自编码器,该编码器在隐藏层具有软阈值激活函数,能够分离和完全恢复多个重叠的二进制相移键控同信道信号。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信