Attention-based Skin Cancer Classification Through Hyperspectral Imaging

M. L. Salvia, E. Torti, M. Gazzoni, E. Marenzi, Raquel León, S. Ortega, H. Fabelo, G. Callicó, F. Leporati
{"title":"Attention-based Skin Cancer Classification Through Hyperspectral Imaging","authors":"M. L. Salvia, E. Torti, M. Gazzoni, E. Marenzi, Raquel León, S. Ortega, H. Fabelo, G. Callicó, F. Leporati","doi":"10.1109/DSD57027.2022.00122","DOIUrl":null,"url":null,"abstract":"In recent years, hyperspectral imaging has been employed in several medical applications, targeting automatic diagnosis of different diseases. These images showed good performance in identifying different types of cancers. Among the methods used for classification, machine learning and deep learning techniques emerged as the most suitable algorithms to handle these data. In this paper, we propose a novel hyperspectral image classification architecture exploiting Vision Transformers. We validated the method on a real hyperspectral dataset containing 76 skin cancer images. Obtained results clearly highlight that the Vision Transforms are a suitable architecture for this task. Measured results outperform the state-of-the-art both in terms of false negative rates and of processing times. Finally, the attention mechanism is evaluated for the first time on medical hyperspectral images.","PeriodicalId":211723,"journal":{"name":"2022 25th Euromicro Conference on Digital System Design (DSD)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 25th Euromicro Conference on Digital System Design (DSD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DSD57027.2022.00122","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In recent years, hyperspectral imaging has been employed in several medical applications, targeting automatic diagnosis of different diseases. These images showed good performance in identifying different types of cancers. Among the methods used for classification, machine learning and deep learning techniques emerged as the most suitable algorithms to handle these data. In this paper, we propose a novel hyperspectral image classification architecture exploiting Vision Transformers. We validated the method on a real hyperspectral dataset containing 76 skin cancer images. Obtained results clearly highlight that the Vision Transforms are a suitable architecture for this task. Measured results outperform the state-of-the-art both in terms of false negative rates and of processing times. Finally, the attention mechanism is evaluated for the first time on medical hyperspectral images.
基于关注的高光谱成像皮肤癌分类
近年来,高光谱成像技术已广泛应用于多种医学领域,旨在实现不同疾病的自动诊断。这些图像在识别不同类型的癌症方面表现良好。在用于分类的方法中,机器学习和深度学习技术成为处理这些数据的最合适算法。本文提出了一种基于视觉变换的高光谱图像分类方法。我们在包含76张皮肤癌图像的真实高光谱数据集上验证了该方法。获得的结果清楚地强调了Vision Transforms是适合此任务的体系结构。测量结果在假阴性率和处理时间方面都优于最先进的技术。最后,首次对医学高光谱图像的注意机制进行了评价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信