Long-term measurements of spectrum occupancy characteristics

T. Harrold, R. Cepeda, M. Beach
{"title":"Long-term measurements of spectrum occupancy characteristics","authors":"T. Harrold, R. Cepeda, M. Beach","doi":"10.1109/DYSPAN.2011.5936272","DOIUrl":null,"url":null,"abstract":"This paper describes the results from a series of long-term observations of spectrum occupancy in the range 300 MHz–4.9 GHz made at a single location. Over 6 months of data has been gathered from a measurement system that is designed to operate continuously, allowing a full picture of spectrum occupancy to be built up. The large amount of data captured permits analysis to identify the portions of spectrum that are occupied non-continuously (i.e. with a duty cycle of less than 100%); these channels might be most suitable for use by a cognitive radio (CR) system that is able to identify temporary spectrum holes and then exploit them. The aim of performing a comprehensive analysis of channel occupancy and its variability is to improve the potential for smart spectrum access by CR devices, by informing their choices concerning the particular portions of spectrum to scan, and how frequently. Results allow measurement channels to be categorised according to their duty cycle; spectrum with a duty cycle between 10% and 90% is considered to be particularly suitable and is found in the regions below 500 MHz and between 1 GHz and 1.2 GHz. A predictable pattern of time occupancy is discovered, caused by variable activity in the portions of spectrum allocated to cellular systems. The characteristics of the occupancy duty cycle according to the time of day is also investigated; some frequencies are shown to exhibit considerable variation of occupancy depending on the hour of observation. A subset of channels is selected for more detailed investigation including short-term variations in channel occupancy.","PeriodicalId":119856,"journal":{"name":"2011 IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2011-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"73","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DYSPAN.2011.5936272","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 73

Abstract

This paper describes the results from a series of long-term observations of spectrum occupancy in the range 300 MHz–4.9 GHz made at a single location. Over 6 months of data has been gathered from a measurement system that is designed to operate continuously, allowing a full picture of spectrum occupancy to be built up. The large amount of data captured permits analysis to identify the portions of spectrum that are occupied non-continuously (i.e. with a duty cycle of less than 100%); these channels might be most suitable for use by a cognitive radio (CR) system that is able to identify temporary spectrum holes and then exploit them. The aim of performing a comprehensive analysis of channel occupancy and its variability is to improve the potential for smart spectrum access by CR devices, by informing their choices concerning the particular portions of spectrum to scan, and how frequently. Results allow measurement channels to be categorised according to their duty cycle; spectrum with a duty cycle between 10% and 90% is considered to be particularly suitable and is found in the regions below 500 MHz and between 1 GHz and 1.2 GHz. A predictable pattern of time occupancy is discovered, caused by variable activity in the portions of spectrum allocated to cellular systems. The characteristics of the occupancy duty cycle according to the time of day is also investigated; some frequencies are shown to exhibit considerable variation of occupancy depending on the hour of observation. A subset of channels is selected for more detailed investigation including short-term variations in channel occupancy.
频谱占用特性的长期测量
本文描述了在单个位置对300 MHz-4.9 GHz范围内的频谱占用进行的一系列长期观测的结果。超过6个月的数据已从一个测量系统收集,该系统被设计为连续运行,允许建立频谱占用的全貌。捕获的大量数据允许分析识别非连续占用的频谱部分(即占空比小于100%);这些信道可能最适合由认知无线电(CR)系统使用,该系统能够识别临时频谱漏洞,然后利用它们。对信道占用及其可变性进行全面分析的目的是通过告知CR设备选择扫描频谱的特定部分以及频率来提高智能频谱访问的潜力。结果允许测量通道根据其占空比进行分类;占空比在10%到90%之间的频谱被认为是特别合适的,并且在500mhz以下和1ghz到1.2 GHz之间的区域中发现。发现了一种可预测的时间占用模式,这是由分配给蜂窝系统的频谱部分的可变活动引起的。研究了不同时段的占用占空比的特点;有些频率根据观察时间的不同显示出相当大的占用变化。选择一个频道子集进行更详细的调查,包括频道占用的短期变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信