Self-organizing Inductive Modeling for Probabilistic Electricity Price Forecasting

F. Lemke
{"title":"Self-organizing Inductive Modeling for Probabilistic Electricity Price Forecasting","authors":"F. Lemke","doi":"10.1109/STC-CSIT.2018.8526706","DOIUrl":null,"url":null,"abstract":"Self-organizing, inductive modeling (GMDH) is a proven and powerful data-driven modeling technology for solving ill-posed modeling problems as found in energy forecasting and other complex systems. It develops analytical, optimal complex, predictive models, systematically, from sets of high-dimensional noisy input data. The paper describes the implementation of rolling self-organizing modeling, exemplarily, for the Global Energy Forecasting Competition 2014 (GEFCom2014) probabilistic electricity price forecasting track using the KnowledgeMiner INSIGHTS inductive modeling tool out-of-the-box.","PeriodicalId":403793,"journal":{"name":"2018 IEEE 13th International Scientific and Technical Conference on Computer Sciences and Information Technologies (CSIT)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 13th International Scientific and Technical Conference on Computer Sciences and Information Technologies (CSIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/STC-CSIT.2018.8526706","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Self-organizing, inductive modeling (GMDH) is a proven and powerful data-driven modeling technology for solving ill-posed modeling problems as found in energy forecasting and other complex systems. It develops analytical, optimal complex, predictive models, systematically, from sets of high-dimensional noisy input data. The paper describes the implementation of rolling self-organizing modeling, exemplarily, for the Global Energy Forecasting Competition 2014 (GEFCom2014) probabilistic electricity price forecasting track using the KnowledgeMiner INSIGHTS inductive modeling tool out-of-the-box.
概率电价预测的自组织归纳模型
自组织归纳建模(GMDH)是一种成熟而强大的数据驱动建模技术,用于解决能源预测和其他复杂系统中的不适定建模问题。它系统地从一组高维噪声输入数据中开发出分析性的、最优的复杂预测模型。本文描述了滚动自组织建模的实现,以2014年全球能源预测竞赛(GEFCom2014)概率电价预测轨道为例,使用了开盒即用的KnowledgeMiner INSIGHTS归纳建模工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信