Fardeen Mahbub, R. Islam, Shouherdho Banerjee Akash, M. T. Ali, Saiful Islam
{"title":"Design and Implementation of a Microstrip Patch Antenna for the Detection of Cancers and Tumors in Skeletal Muscle of the Human Body Using ISM Band","authors":"Fardeen Mahbub, R. Islam, Shouherdho Banerjee Akash, M. T. Ali, Saiful Islam","doi":"10.1109/iemcon53756.2021.9623236","DOIUrl":null,"url":null,"abstract":"Considering numerous benefits of Microwave Imaging (MI) regarding the Biomedical sector, in this paper, the simulation of a Microstrip Patch Antenna has been done in the CST Studio Suite 2019 Software, which is capable of Microwave Imaging (MI) for detecting Cancer/Tumor of Skeletal Muscle. The Antenna operates at 2.45 GHz (ISM-Band), consisting of a maximum frequency of 1.6 GHz and a minimum frequency of 3.2 GHz, respectively. In this paper, a three-layer Human Body Phantom has been created consisting of Skin, Fat, and Muscle, and then a small size (5 mm) tumor has been placed on the muscle portion of the Phantom. The Antenna was applied at three distances of 5 mm, 10 mm, and 15 mm from the Phantom to deduce the Antenna's performance. The SAR values of 0.000287 W/kg, 0.000229 W/kg, and 0.0000346 W/kg were obtained after applying the Antenna to the Cancer-affected body phantom at the Antenna to the Body Phantom distances of 5 mm, 10 mm, and 15 mm, respectively with a resonant frequency of 2.45 GHz which fulfills the minimum SAR requirement of 1.6 W/kg governed by the Federal Communications Commission (FCC). The other obtained output parameters are Return Loss (S1,1), VSWR, Polar Radiation, Directivity (3D), etc. This demonstrates that the simulated Antenna is a better option for diagnosing the Early-Stage Cancers/Tumors in Skeletal muscles.","PeriodicalId":272590,"journal":{"name":"2021 IEEE 12th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON)","volume":"21 6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 12th Annual Information Technology, Electronics and Mobile Communication Conference (IEMCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iemcon53756.2021.9623236","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Considering numerous benefits of Microwave Imaging (MI) regarding the Biomedical sector, in this paper, the simulation of a Microstrip Patch Antenna has been done in the CST Studio Suite 2019 Software, which is capable of Microwave Imaging (MI) for detecting Cancer/Tumor of Skeletal Muscle. The Antenna operates at 2.45 GHz (ISM-Band), consisting of a maximum frequency of 1.6 GHz and a minimum frequency of 3.2 GHz, respectively. In this paper, a three-layer Human Body Phantom has been created consisting of Skin, Fat, and Muscle, and then a small size (5 mm) tumor has been placed on the muscle portion of the Phantom. The Antenna was applied at three distances of 5 mm, 10 mm, and 15 mm from the Phantom to deduce the Antenna's performance. The SAR values of 0.000287 W/kg, 0.000229 W/kg, and 0.0000346 W/kg were obtained after applying the Antenna to the Cancer-affected body phantom at the Antenna to the Body Phantom distances of 5 mm, 10 mm, and 15 mm, respectively with a resonant frequency of 2.45 GHz which fulfills the minimum SAR requirement of 1.6 W/kg governed by the Federal Communications Commission (FCC). The other obtained output parameters are Return Loss (S1,1), VSWR, Polar Radiation, Directivity (3D), etc. This demonstrates that the simulated Antenna is a better option for diagnosing the Early-Stage Cancers/Tumors in Skeletal muscles.