Eigensubspace algorithms for estimating the polyspectral parameters of harmonic processes

H. Parthasarathy, Surendra Prasad
{"title":"Eigensubspace algorithms for estimating the polyspectral parameters of harmonic processes","authors":"H. Parthasarathy, Surendra Prasad","doi":"10.1109/HOST.1993.264549","DOIUrl":null,"url":null,"abstract":"The polyspectral parameters of a harmonic process are defined by the locations and strengths of the polyspectral impulses in the higher dimensional frequency space. MUSIC and ESPRIT-like algorithms for extracting these parameters, when the signal is corrupted by coloured Gaussian noise of unknown statistics, are proposed. The MUSIC-like algorithm involves constructing cumulant matrices having Hermitian structures. A one to one correspondence between the locations of the polyspectral peaks and certain 'steering vectors' in the signal subspace of these cumulant matrices is then set up via the Kronecker product map. The construction of the MUSIC pseudo-polyspectrum is based on this correspondence and the orthogonal eigenstructure of the cumulant matrices. The ESPRIT-like algorithms exploit rotational invariance properties of 'shifted cumulant matrices' to extract the polyspectral parameters from their generalized eigenstructure. Apart from determining the locations of the polyspectral peaks from rank reducing numbers of cumulant matrix pencils, the information contained in the generalized eigenvectors is used to extract the strengths of the polyspectral impulses.<<ETX>>","PeriodicalId":439030,"journal":{"name":"[1993 Proceedings] IEEE Signal Processing Workshop on Higher-Order Statistics","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1993 Proceedings] IEEE Signal Processing Workshop on Higher-Order Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HOST.1993.264549","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The polyspectral parameters of a harmonic process are defined by the locations and strengths of the polyspectral impulses in the higher dimensional frequency space. MUSIC and ESPRIT-like algorithms for extracting these parameters, when the signal is corrupted by coloured Gaussian noise of unknown statistics, are proposed. The MUSIC-like algorithm involves constructing cumulant matrices having Hermitian structures. A one to one correspondence between the locations of the polyspectral peaks and certain 'steering vectors' in the signal subspace of these cumulant matrices is then set up via the Kronecker product map. The construction of the MUSIC pseudo-polyspectrum is based on this correspondence and the orthogonal eigenstructure of the cumulant matrices. The ESPRIT-like algorithms exploit rotational invariance properties of 'shifted cumulant matrices' to extract the polyspectral parameters from their generalized eigenstructure. Apart from determining the locations of the polyspectral peaks from rank reducing numbers of cumulant matrix pencils, the information contained in the generalized eigenvectors is used to extract the strengths of the polyspectral impulses.<>
谐波过程多谱参数估计的特征子空间算法
谐波过程的多谱参数由多谱脉冲在高维频率空间中的位置和强度来定义。当信号被未知统计量的有色高斯噪声破坏时,提出了MUSIC和类似esprit的算法来提取这些参数。类似music的算法涉及构造具有厄米结构的累积矩阵。然后通过Kronecker积图建立多光谱峰的位置与这些累积矩阵的信号子空间中的某些“导向向量”之间的一对一对应关系。MUSIC伪多谱的构造是基于这种对应关系和累积矩阵的正交特征结构。类似esprit的算法利用“移位累积矩阵”的旋转不变性从其广义特征结构中提取多光谱参数。除了从累积矩阵铅笔的降阶数中确定多光谱峰的位置外,还使用广义特征向量中包含的信息来提取多光谱脉冲的强度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信