Cognitive radio engine learning adaptation

Martins Olaleye, K. Dahal, Zeeshan Pervez
{"title":"Cognitive radio engine learning adaptation","authors":"Martins Olaleye, K. Dahal, Zeeshan Pervez","doi":"10.1109/SKIMA.2016.7916241","DOIUrl":null,"url":null,"abstract":"Cognitive radio (CR) system being an intelligence-based communication device has been considered as the next generation emerging technologies to Wireless Communication Systems (WCS). This CR's embedded-intelligent agent is called Cognitive Engine (CE), and is responsible for the dynamic adaptation between the WCS's environment and the radio operational parameters. As a result of CR's intelligence capability, the WCS's quality of service (QoS) and its connectivity operations get enhanced. In order to evaluate the CR engine performance in respect to its learning, timing, and its computational performances. This paper proposes an alternative state-of-the-art enhanced CR learning engine based on Random Neural Network (RNN). Unlike Artificial Neural Network (ANN) systems, RNN establishes strong data generalization, converges faster and produces relatively smaller levels of prediction errors. Subjected to similar environmental conditions, the simulation cumulative results show that the performance of the proposed RNN system is satisfactory and produces 36.895% performance improvement above the ANN learning engine.","PeriodicalId":417370,"journal":{"name":"2016 10th International Conference on Software, Knowledge, Information Management & Applications (SKIMA)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 10th International Conference on Software, Knowledge, Information Management & Applications (SKIMA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SKIMA.2016.7916241","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Cognitive radio (CR) system being an intelligence-based communication device has been considered as the next generation emerging technologies to Wireless Communication Systems (WCS). This CR's embedded-intelligent agent is called Cognitive Engine (CE), and is responsible for the dynamic adaptation between the WCS's environment and the radio operational parameters. As a result of CR's intelligence capability, the WCS's quality of service (QoS) and its connectivity operations get enhanced. In order to evaluate the CR engine performance in respect to its learning, timing, and its computational performances. This paper proposes an alternative state-of-the-art enhanced CR learning engine based on Random Neural Network (RNN). Unlike Artificial Neural Network (ANN) systems, RNN establishes strong data generalization, converges faster and produces relatively smaller levels of prediction errors. Subjected to similar environmental conditions, the simulation cumulative results show that the performance of the proposed RNN system is satisfactory and produces 36.895% performance improvement above the ANN learning engine.
认知无线电引擎学习适应
认知无线电(CR)系统作为一种基于智能的通信设备,被认为是无线通信系统(WCS)的下一代新兴技术。该CR的嵌入式智能代理被称为认知引擎(Cognitive Engine, CE),负责WCS环境和无线电操作参数之间的动态适应。由于CR的智能能力,WCS的服务质量(QoS)和连接操作得到了提高。为了评估CR发动机在学习、定时和计算性能方面的性能。本文提出了一种基于随机神经网络(RNN)的增强型CR学习引擎。与人工神经网络(ANN)系统不同,RNN建立了强大的数据泛化,收敛速度更快,并且产生相对较小的预测误差。在相似的环境条件下,仿真累积结果表明,所提RNN系统的性能令人满意,比人工神经网络学习引擎的性能提高36.895%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信