Indoor scene recognition via probabilistic semantic map

Kun Li, M. Meng
{"title":"Indoor scene recognition via probabilistic semantic map","authors":"Kun Li, M. Meng","doi":"10.1109/ICAL.2012.6308236","DOIUrl":null,"url":null,"abstract":"A domestic robot must recognize its current place accurately and interact with human beings effectively, thus we desire efficient and semantically meaningful scene representation. In this article, we introduce weighted component pooling to analyze indoor scenes, and probabilistic semantic mapping to represent them based on interactive robot learning. We test this algorithm with 10 scene types from an indoor scene recognition image set and 5 scene types with a humanoid robot in domestic settings. Our result shows that the robot can learn and find desired place according to our verbal commands accurately.","PeriodicalId":373152,"journal":{"name":"2012 IEEE International Conference on Automation and Logistics","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Conference on Automation and Logistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAL.2012.6308236","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

A domestic robot must recognize its current place accurately and interact with human beings effectively, thus we desire efficient and semantically meaningful scene representation. In this article, we introduce weighted component pooling to analyze indoor scenes, and probabilistic semantic mapping to represent them based on interactive robot learning. We test this algorithm with 10 scene types from an indoor scene recognition image set and 5 scene types with a humanoid robot in domestic settings. Our result shows that the robot can learn and find desired place according to our verbal commands accurately.
基于概率语义图的室内场景识别
家用机器人必须准确地识别其当前位置并有效地与人类互动,因此我们需要高效且有语义意义的场景表示。在本文中,我们引入了加权组件池来分析室内场景,以及基于交互机器人学习的概率语义映射来表示它们。我们使用来自室内场景识别图像集的10种场景类型和家用环境中仿人机器人的5种场景类型来测试该算法。我们的研究结果表明,机器人可以准确地根据我们的口头命令学习并找到想要的地方。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信