A 6.54-to-26.03 TOPS/W Computing-In-Memory RNN Processor using Input Similarity Optimization and Attention-based Context-breaking with Output Speculation

Ruiqi Guo, Hao Li, Ruhui Liu, Zhixiao Zhang, Limei Tang, Hao Sun, Leibo Liu, Meng-Fan Chang, Shaojun Wei, S. Yin
{"title":"A 6.54-to-26.03 TOPS/W Computing-In-Memory RNN Processor using Input Similarity Optimization and Attention-based Context-breaking with Output Speculation","authors":"Ruiqi Guo, Hao Li, Ruhui Liu, Zhixiao Zhang, Limei Tang, Hao Sun, Leibo Liu, Meng-Fan Chang, Shaojun Wei, S. Yin","doi":"10.23919/VLSICircuits52068.2021.9492492","DOIUrl":null,"url":null,"abstract":"This work presents a 65nm RNN processor with computing-inmemory (CIM) macros. The main contributions include: 1) A similarity analyzer (SimAyz) to fully leverage the temporal stability of input sequences with 1.52× performance speedup; 2) An attention-based context-breaking (AttenBrk) method with output speculation to reduce off-chip data accesses up to 30.3%; 3) A double-buffering scheme for CIM macros to hide writing latency and a pipeline processing element (PE) array to increase the system throughput. Measured results show that this chip achieves 6.54-to-26.03 TOPS/W energy efficiency vary from various LSTM benchmarks.","PeriodicalId":106356,"journal":{"name":"2021 Symposium on VLSI Circuits","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Symposium on VLSI Circuits","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/VLSICircuits52068.2021.9492492","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

This work presents a 65nm RNN processor with computing-inmemory (CIM) macros. The main contributions include: 1) A similarity analyzer (SimAyz) to fully leverage the temporal stability of input sequences with 1.52× performance speedup; 2) An attention-based context-breaking (AttenBrk) method with output speculation to reduce off-chip data accesses up to 30.3%; 3) A double-buffering scheme for CIM macros to hide writing latency and a pipeline processing element (PE) array to increase the system throughput. Measured results show that this chip achieves 6.54-to-26.03 TOPS/W energy efficiency vary from various LSTM benchmarks.
一个6.54到26.03 TOPS/W的内存中计算RNN处理器,使用输入相似性优化和基于注意力的上下文分解和输出推测
本文提出了一种具有内存计算宏(CIM)的65nm RNN处理器。主要贡献包括:1)相似性分析器(SimAyz)充分利用输入序列的时间稳定性,性能加速1.52倍;2)基于注意力的上下文分解(AttenBrk)方法,通过输出推测将片外数据访问减少30.3%;3)采用CIM宏的双缓冲方案来隐藏写入延迟,采用流水线处理元素(PE)阵列来提高系统吞吐量。实测结果表明,该芯片在不同LSTM基准下的能效可达6.54- 26.03 TOPS/W。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信