A personalization recommendation method with time characteristics

Keqing Guan, Yimin Zhang, Ping Song
{"title":"A personalization recommendation method with time characteristics","authors":"Keqing Guan, Yimin Zhang, Ping Song","doi":"10.1109/ICINFA.2016.7832149","DOIUrl":null,"url":null,"abstract":"Personalization recommendation can effectively solve the negative influence of information overload to users in the environment of big data. And the existing personalization recommendation model is insufficient in integrating the time characteristics of users' behavior. We build a new extend model of personalization recommendation based on the method of latent factor model. Time characteristics of users' historical behavior are introduced into new model to improve the predictions' accuracy. we implement the new model based on the method of factorization machines, and verify the validity of new model by using the data of movielens dataset. Experimental results demonstrate better performance of new model in improving the predictions' accuracy of users' preferences compared with existing model.","PeriodicalId":389619,"journal":{"name":"2016 IEEE International Conference on Information and Automation (ICIA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Information and Automation (ICIA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICINFA.2016.7832149","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Personalization recommendation can effectively solve the negative influence of information overload to users in the environment of big data. And the existing personalization recommendation model is insufficient in integrating the time characteristics of users' behavior. We build a new extend model of personalization recommendation based on the method of latent factor model. Time characteristics of users' historical behavior are introduced into new model to improve the predictions' accuracy. we implement the new model based on the method of factorization machines, and verify the validity of new model by using the data of movielens dataset. Experimental results demonstrate better performance of new model in improving the predictions' accuracy of users' preferences compared with existing model.
一种具有时间特征的个性化推荐方法
个性化推荐可以有效解决大数据环境下信息过载对用户的负面影响。现有的个性化推荐模型在整合用户行为的时间特征方面存在不足。基于潜在因素模型的方法,建立了个性化推荐的扩展模型。在模型中引入了用户历史行为的时间特征,提高了预测的准确性。我们基于因式分解机的方法实现了新模型,并利用movielens数据集的数据验证了新模型的有效性。实验结果表明,与现有模型相比,新模型在提高用户偏好预测精度方面有更好的表现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信