The Bigger Picture: Combining Econometrics with Analytics Improve Forecasts of Movie Success

PSN: Econometrics Pub Date : 2018-06-01 DOI:10.3386/w24755
Steven F. Lehrer, Tian Xie
{"title":"The Bigger Picture: Combining Econometrics with Analytics Improve Forecasts of Movie Success","authors":"Steven F. Lehrer, Tian Xie","doi":"10.3386/w24755","DOIUrl":null,"url":null,"abstract":"There exists significant hype regarding how much machine learning and incorporating social media data can improve forecast accuracy in commercial applications. To assess if the hype is warranted, we use data from the film industry in simulation experiments that contrast econometric approaches with tools from the predictive analytics literature. Further, we propose new strategies that combine elements from each literature in a bid to capture richer patterns of heterogeneity in the underlying relationship governing revenue. Our results demonstrate the importance of social media data and value from hybrid strategies that combine econometrics and machine learning when conducting forecasts with new big data sources. Specifically, while both least squares support vector regression and recursive partitioning strategies greatly outperform dimension reduction strategies and traditional econometrics approaches in fore-cast accuracy, there are further significant gains from using hybrid approaches. Further, Monte Carlo experiments demonstrate that these benefits arise from the significant heterogeneity in how social media measures and other film characteristics influence box office outcomes.","PeriodicalId":320844,"journal":{"name":"PSN: Econometrics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PSN: Econometrics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3386/w24755","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

There exists significant hype regarding how much machine learning and incorporating social media data can improve forecast accuracy in commercial applications. To assess if the hype is warranted, we use data from the film industry in simulation experiments that contrast econometric approaches with tools from the predictive analytics literature. Further, we propose new strategies that combine elements from each literature in a bid to capture richer patterns of heterogeneity in the underlying relationship governing revenue. Our results demonstrate the importance of social media data and value from hybrid strategies that combine econometrics and machine learning when conducting forecasts with new big data sources. Specifically, while both least squares support vector regression and recursive partitioning strategies greatly outperform dimension reduction strategies and traditional econometrics approaches in fore-cast accuracy, there are further significant gains from using hybrid approaches. Further, Monte Carlo experiments demonstrate that these benefits arise from the significant heterogeneity in how social media measures and other film characteristics influence box office outcomes.
更大的图景:结合计量经济学和分析提高电影成功的预测
关于机器学习和整合社交媒体数据可以在多大程度上提高商业应用中的预测准确性,存在着大量的炒作。为了评估这种炒作是否有根据,我们在模拟实验中使用了来自电影行业的数据,将计量经济学方法与预测分析文献中的工具进行了对比。此外,我们提出了新的策略,将每个文献中的元素结合起来,以在控制收入的潜在关系中捕捉更丰富的异质性模式。我们的研究结果证明了社交媒体数据的重要性,以及结合计量经济学和机器学习的混合策略在利用新的大数据源进行预测时的价值。具体来说,虽然最小二乘支持向量回归和递归划分策略在预测精度上都大大优于降维策略和传统计量经济学方法,但使用混合方法可以进一步显著提高预测精度。此外,蒙特卡罗实验表明,这些好处来自于社交媒体措施和其他电影特征对票房结果的显著异质性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信