Adaptive smoothing in fMRI data processing neural networks

A. Vilamala, Kristoffer Hougaard Madsen, L. K. Hansen
{"title":"Adaptive smoothing in fMRI data processing neural networks","authors":"A. Vilamala, Kristoffer Hougaard Madsen, L. K. Hansen","doi":"10.1109/PRNI.2017.7981499","DOIUrl":null,"url":null,"abstract":"Functional Magnetic Resonance Imaging (fMRI) relies on multi-step data processing pipelines to accurately determine brain activity; among them, the crucial step of spatial smoothing. These pipelines are commonly suboptimal, given the local optimisation strategy they use, treating each step in isolation. With the advent of new tools for deep learning, recent work has proposed to turn these pipelines into end-to-end learning networks. This change of paradigm offers new avenues to improvement as it allows for a global optimisation. The current work aims at benefitting from this paradigm shift by defining a smoothing step as a layer in these networks able to adaptively modulate the degree of smoothing required by each brain volume to better accomplish a given data analysis task. The viability is evaluated on real fMRI data where subjects did alternate between left and right finger tapping tasks.","PeriodicalId":429199,"journal":{"name":"2017 International Workshop on Pattern Recognition in Neuroimaging (PRNI)","volume":"97 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Workshop on Pattern Recognition in Neuroimaging (PRNI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PRNI.2017.7981499","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Functional Magnetic Resonance Imaging (fMRI) relies on multi-step data processing pipelines to accurately determine brain activity; among them, the crucial step of spatial smoothing. These pipelines are commonly suboptimal, given the local optimisation strategy they use, treating each step in isolation. With the advent of new tools for deep learning, recent work has proposed to turn these pipelines into end-to-end learning networks. This change of paradigm offers new avenues to improvement as it allows for a global optimisation. The current work aims at benefitting from this paradigm shift by defining a smoothing step as a layer in these networks able to adaptively modulate the degree of smoothing required by each brain volume to better accomplish a given data analysis task. The viability is evaluated on real fMRI data where subjects did alternate between left and right finger tapping tasks.
fMRI数据处理神经网络中的自适应平滑
功能磁共振成像(fMRI)依靠多步数据处理管道来准确确定大脑活动;其中,至关重要的一步是空间平滑。考虑到它们使用的局部优化策略,这些管道通常不是最优的,它们孤立地处理每个步骤。随着深度学习新工具的出现,最近的工作已经提出将这些管道转变为端到端的学习网络。这种范式的改变为改进提供了新的途径,因为它允许全局优化。当前的工作旨在通过将平滑步骤定义为这些网络中的一层,从而受益于这种范式转变,该层能够自适应地调节每个脑容量所需的平滑程度,以更好地完成给定的数据分析任务。可行性是通过真实的功能磁共振成像数据来评估的,在这些数据中,受试者在左右手指敲击任务之间交替进行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信