Fixed points of reversible semigroups of nonexpansive mappings

Theodore Mitchell
{"title":"Fixed points of reversible semigroups of nonexpansive mappings","authors":"Theodore Mitchell","doi":"10.2996/KMJ/1138846168","DOIUrl":null,"url":null,"abstract":"Takahashi [7, p. 384] proved that if K is a compact convex subset of a Banach space, and S is a left amenable semigroup of nonexpansive self-maps of K, then K contains a common fixed point of S. This theorem generalizes a result of DeMarr [2, p. 1139], who obtained the above implication for the case where S is commutative. In this note, we observe that Takahashi's theorem can be further extended, and the proof slightly simplified, by considering a purely algebraic property that every left amenable semigroup must possess, that of left reversibility. The proof employs suitable modifications of the methods of [2] and [7].","PeriodicalId":318148,"journal":{"name":"Kodai Mathematical Seminar Reports","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kodai Mathematical Seminar Reports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2996/KMJ/1138846168","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

Abstract

Takahashi [7, p. 384] proved that if K is a compact convex subset of a Banach space, and S is a left amenable semigroup of nonexpansive self-maps of K, then K contains a common fixed point of S. This theorem generalizes a result of DeMarr [2, p. 1139], who obtained the above implication for the case where S is commutative. In this note, we observe that Takahashi's theorem can be further extended, and the proof slightly simplified, by considering a purely algebraic property that every left amenable semigroup must possess, that of left reversibility. The proof employs suitable modifications of the methods of [2] and [7].
非扩张映射的可逆半群的不动点
Takahashi [7, p. 384]证明了如果K是Banach空间的紧凸子集,且S是K的非扩张自映射的左可调半群,则K包含S的一个公共不动点。该定理推广了DeMarr [2, p. 1139]在S可交换情况下得到的上述结论。在这篇笔记中,我们观察到Takahashi定理可以进一步推广,并且通过考虑每个左可服从半群必须具有的一个纯代数性质,即左可逆性的性质,可以稍微简化证明。证明采用了[2]和[7]方法的适当修改。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信