{"title":"T-Storm: Traffic-Aware Online Scheduling in Storm","authors":"Jielong Xu, Zhenhua Chen, Jian Tang, Sen Su","doi":"10.1109/ICDCS.2014.61","DOIUrl":null,"url":null,"abstract":"Storm has emerged as a promising computation platform for stream data processing. In this paper, we first show inefficiencies of the current practice of Storm scheduling and challenges associated with applying traffic-aware online scheduling in Storm via experimental results and analysis. Motivated by our observations, we design and implement a new stream data processing system based on Storm, namely, T-Storm. Compared to Storm, T-Storm has the following desirable features: 1) based on runtime states, it accelerates data processing by leveraging effective traffic-aware scheduling for assigning/re-assigning tasks dynamically, which minimizes inter-node and inter-process traffic while ensuring no worker nodes are overloaded, 2) it enables fine-grained control over worker node consolidation such that T-Storm can achieve better performance with even fewer worker nodes, 3) it allows hot-swapping of scheduling algorithms and adjustment of scheduling parameters on the fly, and 4) it is transparent to Storm users (i.e., Storm applications can be ported to run on T-Storm without any changes). We conducted real experiments in a cluster using well-known data processing applications for performance evaluation. Extensive experimental results show that compared to Storm (with the default scheduler), T-Storm can achieve over 84% and 27% speedup on lightly and heavily loaded topologies respectively (in terms of average processing time) with 30% less number of worker nodes.","PeriodicalId":170186,"journal":{"name":"2014 IEEE 34th International Conference on Distributed Computing Systems","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"212","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 34th International Conference on Distributed Computing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDCS.2014.61","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 212
Abstract
Storm has emerged as a promising computation platform for stream data processing. In this paper, we first show inefficiencies of the current practice of Storm scheduling and challenges associated with applying traffic-aware online scheduling in Storm via experimental results and analysis. Motivated by our observations, we design and implement a new stream data processing system based on Storm, namely, T-Storm. Compared to Storm, T-Storm has the following desirable features: 1) based on runtime states, it accelerates data processing by leveraging effective traffic-aware scheduling for assigning/re-assigning tasks dynamically, which minimizes inter-node and inter-process traffic while ensuring no worker nodes are overloaded, 2) it enables fine-grained control over worker node consolidation such that T-Storm can achieve better performance with even fewer worker nodes, 3) it allows hot-swapping of scheduling algorithms and adjustment of scheduling parameters on the fly, and 4) it is transparent to Storm users (i.e., Storm applications can be ported to run on T-Storm without any changes). We conducted real experiments in a cluster using well-known data processing applications for performance evaluation. Extensive experimental results show that compared to Storm (with the default scheduler), T-Storm can achieve over 84% and 27% speedup on lightly and heavily loaded topologies respectively (in terms of average processing time) with 30% less number of worker nodes.