Skeleton-based Recognition of Pedestrian Crossing Intention using Attention Graph Neural Networks

M. Le, Truong-Dong Do, Minh-Thien Duong, Tran-Nhat-Minh Ta, Van-Binh Nguyen, M. Le
{"title":"Skeleton-based Recognition of Pedestrian Crossing Intention using Attention Graph Neural Networks","authors":"M. Le, Truong-Dong Do, Minh-Thien Duong, Tran-Nhat-Minh Ta, Van-Binh Nguyen, M. Le","doi":"10.1109/IWIS56333.2022.9920850","DOIUrl":null,"url":null,"abstract":"Besides the ability to automatically detect and localize on the road, self-driving cars need to observe and understand pedestrian attention to ensure safe operations. In this study, a compact skeleton-based method to predict pedestrian crossing intention is presented. The skeleton data is first extracted using a state-of-the-art pose estimation method. Then, the proposed approach combines graph neural networks, self-attention mechanisms, and temporal convolutions to create distinctive representations of pedestrian moving skeleton sequences. The crossing intention of people is classified based on the extracted features. The experiments demonstrate competitive results with previous methods on the public JAAD dataset.","PeriodicalId":340399,"journal":{"name":"2022 International Workshop on Intelligent Systems (IWIS)","volume":"98 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Workshop on Intelligent Systems (IWIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWIS56333.2022.9920850","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Besides the ability to automatically detect and localize on the road, self-driving cars need to observe and understand pedestrian attention to ensure safe operations. In this study, a compact skeleton-based method to predict pedestrian crossing intention is presented. The skeleton data is first extracted using a state-of-the-art pose estimation method. Then, the proposed approach combines graph neural networks, self-attention mechanisms, and temporal convolutions to create distinctive representations of pedestrian moving skeleton sequences. The crossing intention of people is classified based on the extracted features. The experiments demonstrate competitive results with previous methods on the public JAAD dataset.
基于骨架的注意图神经网络行人过马路意图识别
除了在道路上自动检测和定位的能力外,自动驾驶汽车还需要观察和理解行人的注意力,以确保安全运行。本文提出了一种基于骨架的行人过马路意图预测方法。首先使用最先进的姿态估计方法提取骨骼数据。然后,该方法结合了图神经网络、自注意机制和时间卷积来创建行人运动骨架序列的独特表示。根据提取的特征对人的交叉意图进行分类。在公开的JAAD数据集上,实验证明了与先前方法的竞争结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信