"Mechanical Properties, Drying Shrinkage and Resistance to Freezing and Thawing of Concrete Using Recycled Aggregate"

T. Yamato, Y. Emoto, M. Soeda
{"title":"\"Mechanical Properties, Drying Shrinkage and Resistance to Freezing and Thawing of Concrete Using Recycled Aggregate\"","authors":"T. Yamato, Y. Emoto, M. Soeda","doi":"10.14359/6034","DOIUrl":null,"url":null,"abstract":"This paper presents the results of an investigation to determine the performance characteristics of concrete made with recycled coarse aggregate from a plant. Slump and air content of fresh recycled aggregate concrete are studied. The compressive strength, drying shrinkage and resistance to freezing and thawing were investigated experimentally when the types and combinations of coarse aggregate, admixture, air content and so on were varied. It was found that the recycled aggregate concrete decreased the compressive strength at 7 to 28 days as compared with those properties of the control concrete. The decrease in strength can be suppressed low by partial use of recycled coarse aggregate. Drying shrinkage of recycled aggregate concrete showed larger value than conventional crushed aggregate concrete. The use of shrinkage reducing agent can reduce the drying shrinkage of recycled aggregate concrete. The resistance to freezing and thawing of recycled aggregate concrete was lower than that of control concrete of similar composition. The decrease in resistance to freezing and thawing can be suppressed low by partial use of recycled aggregate, reducing the water cement ratio and increasing entraining air.","PeriodicalId":255305,"journal":{"name":"SP-179: Fourth CANMET/ACI/JCI Conference: Advances in Concrete Technology","volume":"04 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SP-179: Fourth CANMET/ACI/JCI Conference: Advances in Concrete Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14359/6034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 33

Abstract

This paper presents the results of an investigation to determine the performance characteristics of concrete made with recycled coarse aggregate from a plant. Slump and air content of fresh recycled aggregate concrete are studied. The compressive strength, drying shrinkage and resistance to freezing and thawing were investigated experimentally when the types and combinations of coarse aggregate, admixture, air content and so on were varied. It was found that the recycled aggregate concrete decreased the compressive strength at 7 to 28 days as compared with those properties of the control concrete. The decrease in strength can be suppressed low by partial use of recycled coarse aggregate. Drying shrinkage of recycled aggregate concrete showed larger value than conventional crushed aggregate concrete. The use of shrinkage reducing agent can reduce the drying shrinkage of recycled aggregate concrete. The resistance to freezing and thawing of recycled aggregate concrete was lower than that of control concrete of similar composition. The decrease in resistance to freezing and thawing can be suppressed low by partial use of recycled aggregate, reducing the water cement ratio and increasing entraining air.
再生骨料混凝土的力学性能、干缩性能和抗冻融性能
本文介绍了用某厂再生粗骨料配制混凝土的性能特性的研究结果。对新鲜再生骨料混凝土的坍落度和含气量进行了研究。试验研究了不同粗骨料、外加剂、掺量等的种类和组合对复合材料抗压强度、干收缩率和抗冻融性能的影响。结果表明,与对照混凝土相比,再生骨料混凝土在7 ~ 28天的抗压强度有所下降。部分使用再生粗骨料可以抑制强度的下降。再生骨料混凝土的干收缩率高于常规破碎骨料混凝土。使用减缩剂可以降低再生骨料混凝土的干燥收缩率。再生骨料混凝土的抗冻融性能低于同等配比的对照混凝土。部分使用再生骨料,降低水灰比,增加夹带空气,可以较低地抑制冻融阻力的下降。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信