Clustering Earthquake Data

Cihan Savaş, M. Yıldız, S. Eken, Cevat Ikibas, A. Sayar
{"title":"Clustering Earthquake Data","authors":"Cihan Savaş, M. Yıldız, S. Eken, Cevat Ikibas, A. Sayar","doi":"10.4018/978-1-5225-7519-1.CH010","DOIUrl":null,"url":null,"abstract":"Seismology, which is a sub-branch of geophysics, is one of the fields in which data mining methods can be effectively applied. In this chapter, employing data mining techniques on multivariate seismic data, decomposition of non-spatial variable is done. Then k-means clustering, density-based spatial clustering of applications with noise (DBSCAN), and hierarchical tree clustering algorithms are applied on decomposed data, and then pattern analysis is conducted using spatial data on the resulted clusters. The conducted analysis suggests that the clustering results with spatial data is compatible with the reality and characteristic features of regions related to earthquakes can be determined as a result of modeling seismic data using clustering algorithms. The baseline metric reported is clustering times for varying size of inputs.","PeriodicalId":153959,"journal":{"name":"Big Data and Knowledge Sharing in Virtual Organizations","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Big Data and Knowledge Sharing in Virtual Organizations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/978-1-5225-7519-1.CH010","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Seismology, which is a sub-branch of geophysics, is one of the fields in which data mining methods can be effectively applied. In this chapter, employing data mining techniques on multivariate seismic data, decomposition of non-spatial variable is done. Then k-means clustering, density-based spatial clustering of applications with noise (DBSCAN), and hierarchical tree clustering algorithms are applied on decomposed data, and then pattern analysis is conducted using spatial data on the resulted clusters. The conducted analysis suggests that the clustering results with spatial data is compatible with the reality and characteristic features of regions related to earthquakes can be determined as a result of modeling seismic data using clustering algorithms. The baseline metric reported is clustering times for varying size of inputs.
地震数据聚类
地震学是地球物理学的一个分支,是数据挖掘方法可以有效应用的领域之一。本章采用数据挖掘技术对多变量地震数据进行非空间变量的分解。然后对分解后的数据采用k-means聚类、基于密度的带噪声应用空间聚类(DBSCAN)和层次树聚类算法,并对聚类结果进行空间数据模式分析。分析表明,利用聚类算法对地震数据进行建模,得到的空间数据聚类结果符合实际情况,可以确定地震相关区域的特征特征。报告的基线度量是不同大小输入的聚类时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信