Multi-view gait recognition on curved trajectories

D. López-Fernández, F. J. Madrid-Cuevas, Ángel Carmona Poyato, R. Muñoz-Salinas, R. Carnicer
{"title":"Multi-view gait recognition on curved trajectories","authors":"D. López-Fernández, F. J. Madrid-Cuevas, Ángel Carmona Poyato, R. Muñoz-Salinas, R. Carnicer","doi":"10.1145/2789116.2789122","DOIUrl":null,"url":null,"abstract":"Appearance changes due to viewing angle changes cause difficulties for most of the gait recognition methods. In this paper, we propose a new approach for multi-view recognition, which allows to recognize people walking on curved paths. The recognition is based on 3D angular analysis of the movement of the walking human. A coarse-to-fine gait signature represents local variations on the angular measurements along time. A Support Vector Machine is used for classifying, and a sliding temporal window for majority vote policy is used to smooth and reinforce the classification results. The proposed approach has been experimentally validated on the publicly available \"Kyushu University 4D Gait Database\". The results show that this new approach achieves promising results in the problem of gait recognition on curved paths.","PeriodicalId":113163,"journal":{"name":"Proceedings of the 9th International Conference on Distributed Smart Cameras","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 9th International Conference on Distributed Smart Cameras","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2789116.2789122","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Appearance changes due to viewing angle changes cause difficulties for most of the gait recognition methods. In this paper, we propose a new approach for multi-view recognition, which allows to recognize people walking on curved paths. The recognition is based on 3D angular analysis of the movement of the walking human. A coarse-to-fine gait signature represents local variations on the angular measurements along time. A Support Vector Machine is used for classifying, and a sliding temporal window for majority vote policy is used to smooth and reinforce the classification results. The proposed approach has been experimentally validated on the publicly available "Kyushu University 4D Gait Database". The results show that this new approach achieves promising results in the problem of gait recognition on curved paths.
基于曲线轨迹的多视角步态识别
由于视角的变化而引起的外观变化给大多数步态识别方法带来了困难。在本文中,我们提出了一种新的多视图识别方法,该方法可以识别在弯曲路径上行走的人。该识别是基于对行走人体运动的三维角度分析。从粗到细的步态特征表示角测量随时间的局部变化。使用支持向量机进行分类,使用多数投票策略的滑动时间窗口对分类结果进行平滑和强化。所提出的方法已在公开可用的“九州大学4D步态数据库”上进行了实验验证。结果表明,该方法在曲线路径的步态识别问题上取得了良好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信