A kernel-based supervised classifier for the analysis of hyperspectral data

M. M. Dundar, D. Landgrebe
{"title":"A kernel-based supervised classifier for the analysis of hyperspectral data","authors":"M. M. Dundar, D. Landgrebe","doi":"10.1109/WARSD.2003.1295211","DOIUrl":null,"url":null,"abstract":"In this study a supervised classifier based on the kernel implementation of the Bayes rule is introduced. The proposed technique first suggests an implicit nonlinear transformation of the data into a feature space and then seeks to fit normal distributions having a common covariance matrix onto the mapped data. The use of kernel concept in this process gives us the flexibility required to model complex data structures that originate from a wide-range of class conditional distributions. Although the decision boundaries in the new feature space are piece-wise linear, these corresponds to powerful nonlinear boundaries in the original input space. For the data we considered we have obtained some encouraging results.","PeriodicalId":395735,"journal":{"name":"IEEE Workshop on Advances in Techniques for Analysis of Remotely Sensed Data, 2003","volume":"86 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Workshop on Advances in Techniques for Analysis of Remotely Sensed Data, 2003","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WARSD.2003.1295211","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this study a supervised classifier based on the kernel implementation of the Bayes rule is introduced. The proposed technique first suggests an implicit nonlinear transformation of the data into a feature space and then seeks to fit normal distributions having a common covariance matrix onto the mapped data. The use of kernel concept in this process gives us the flexibility required to model complex data structures that originate from a wide-range of class conditional distributions. Although the decision boundaries in the new feature space are piece-wise linear, these corresponds to powerful nonlinear boundaries in the original input space. For the data we considered we have obtained some encouraging results.
高光谱数据分析的核监督分类器
本文提出了一种基于贝叶斯规则核实现的监督分类器。所提出的技术首先建议将数据隐式非线性转换为特征空间,然后寻求将具有公共协方差矩阵的正态分布拟合到映射数据上。在此过程中使用核概念为我们提供了建模复杂数据结构所需的灵活性,这些数据结构源于广泛的类条件分布。虽然新特征空间中的决策边界是分段线性的,但它们对应于原始输入空间中强大的非线性边界。对于我们考虑的数据,我们已经获得了一些令人鼓舞的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信