{"title":"A kernel-based supervised classifier for the analysis of hyperspectral data","authors":"M. M. Dundar, D. Landgrebe","doi":"10.1109/WARSD.2003.1295211","DOIUrl":null,"url":null,"abstract":"In this study a supervised classifier based on the kernel implementation of the Bayes rule is introduced. The proposed technique first suggests an implicit nonlinear transformation of the data into a feature space and then seeks to fit normal distributions having a common covariance matrix onto the mapped data. The use of kernel concept in this process gives us the flexibility required to model complex data structures that originate from a wide-range of class conditional distributions. Although the decision boundaries in the new feature space are piece-wise linear, these corresponds to powerful nonlinear boundaries in the original input space. For the data we considered we have obtained some encouraging results.","PeriodicalId":395735,"journal":{"name":"IEEE Workshop on Advances in Techniques for Analysis of Remotely Sensed Data, 2003","volume":"86 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-10-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Workshop on Advances in Techniques for Analysis of Remotely Sensed Data, 2003","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WARSD.2003.1295211","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
In this study a supervised classifier based on the kernel implementation of the Bayes rule is introduced. The proposed technique first suggests an implicit nonlinear transformation of the data into a feature space and then seeks to fit normal distributions having a common covariance matrix onto the mapped data. The use of kernel concept in this process gives us the flexibility required to model complex data structures that originate from a wide-range of class conditional distributions. Although the decision boundaries in the new feature space are piece-wise linear, these corresponds to powerful nonlinear boundaries in the original input space. For the data we considered we have obtained some encouraging results.