Research on statistics-based model for E-commerce user purchase prediction

Huailin Dong, Lingwei Xie, Zhongnan Zhang
{"title":"Research on statistics-based model for E-commerce user purchase prediction","authors":"Huailin Dong, Lingwei Xie, Zhongnan Zhang","doi":"10.1109/ICCSE.2015.7250308","DOIUrl":null,"url":null,"abstract":"This paper describes our work for ALIDATA DISCOVERY competition. Through analyzing massive real-world user action data provided by Tmall, one of the largest B2C online retail platforms in China, we try to predict future user purchases. The prediction results are judged by F1 Score that is consist of two parts, precision and recall rate. The provided data set contains more than 500 million action records from over 12 million distinct users. Such a massive data set drives us to finish the task in MapReduce fashion on the Open Data Processing Service (ODPS) platform. According to statistical results, we classify all users into different groups firstly. Then the rule model, timing model, statistics model are adopted for predicting future user purchases. By comparison, the statistics model obtains the best F1Score.","PeriodicalId":311451,"journal":{"name":"2015 10th International Conference on Computer Science & Education (ICCSE)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 10th International Conference on Computer Science & Education (ICCSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCSE.2015.7250308","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

This paper describes our work for ALIDATA DISCOVERY competition. Through analyzing massive real-world user action data provided by Tmall, one of the largest B2C online retail platforms in China, we try to predict future user purchases. The prediction results are judged by F1 Score that is consist of two parts, precision and recall rate. The provided data set contains more than 500 million action records from over 12 million distinct users. Such a massive data set drives us to finish the task in MapReduce fashion on the Open Data Processing Service (ODPS) platform. According to statistical results, we classify all users into different groups firstly. Then the rule model, timing model, statistics model are adopted for predicting future user purchases. By comparison, the statistics model obtains the best F1Score.
基于统计的电子商务用户购买预测模型研究
本文介绍了我们为ALIDATA DISCOVERY竞赛所做的工作。通过分析中国最大的B2C在线零售平台之一天猫提供的大量真实用户行为数据,我们试图预测未来用户的购买行为。预测结果由F1评分来判断,F1评分由准确率和召回率两部分组成。所提供的数据集包含来自超过1200万不同用户的超过5亿条操作记录。如此庞大的数据集促使我们在开放数据处理服务(ODPS)平台上以MapReduce的方式完成任务。根据统计结果,我们首先将所有用户划分为不同的组。然后采用规则模型、时序模型、统计模型对用户未来购买行为进行预测。通过比较,统计模型得到了最佳的F1Score。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信