Minimum Cost Flow in the CONGEST Model

Tijn de Vos
{"title":"Minimum Cost Flow in the CONGEST Model","authors":"Tijn de Vos","doi":"10.48550/arXiv.2304.01600","DOIUrl":null,"url":null,"abstract":"We consider the CONGEST model on a network with $n$ nodes, $m$ edges, diameter $D$, and integer costs and capacities bounded by $\\text{poly} n$. In this paper, we show how to find an exact solution to the minimum cost flow problem in $n^{1/2+o(1)}(\\sqrt{n}+D)$ rounds, improving the state of the art algorithm with running time $m^{3/7+o(1)}(\\sqrt nD^{1/4}+D)$ [Forster et al. FOCS 2021], which only holds for the special case of unit capacity graphs. For certain graphs, we achieve even better results. In particular, for planar graphs, expander graphs, $n^{o(1)}$-genus graphs, $n^{o(1)}$-treewidth graphs, and excluded-minor graphs our algorithm takes $n^{1/2+o(1)}D$ rounds. We obtain this result by combining recent results on Laplacian solvers in the CONGEST model [Forster et al. FOCS 2021, Anagnostides et al. DISC 2022] with a CONGEST implementation of the LP solver of Lee and Sidford [FOCS 2014], and finally show that we can round the approximate solution to an exact solution. Our algorithm solves certain linear programs, that generalize minimum cost flow, up to additive error $\\epsilon$ in $n^{1/2+o(1)}(\\sqrt{n}+D)\\log^3 (1/\\epsilon)$ rounds.","PeriodicalId":116242,"journal":{"name":"Colloquium on Structural Information & Communication Complexity","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloquium on Structural Information & Communication Complexity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2304.01600","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We consider the CONGEST model on a network with $n$ nodes, $m$ edges, diameter $D$, and integer costs and capacities bounded by $\text{poly} n$. In this paper, we show how to find an exact solution to the minimum cost flow problem in $n^{1/2+o(1)}(\sqrt{n}+D)$ rounds, improving the state of the art algorithm with running time $m^{3/7+o(1)}(\sqrt nD^{1/4}+D)$ [Forster et al. FOCS 2021], which only holds for the special case of unit capacity graphs. For certain graphs, we achieve even better results. In particular, for planar graphs, expander graphs, $n^{o(1)}$-genus graphs, $n^{o(1)}$-treewidth graphs, and excluded-minor graphs our algorithm takes $n^{1/2+o(1)}D$ rounds. We obtain this result by combining recent results on Laplacian solvers in the CONGEST model [Forster et al. FOCS 2021, Anagnostides et al. DISC 2022] with a CONGEST implementation of the LP solver of Lee and Sidford [FOCS 2014], and finally show that we can round the approximate solution to an exact solution. Our algorithm solves certain linear programs, that generalize minimum cost flow, up to additive error $\epsilon$ in $n^{1/2+o(1)}(\sqrt{n}+D)\log^3 (1/\epsilon)$ rounds.
拥塞模型中的最小成本流
我们考虑一个网络上的CONGEST模型,该网络节点为$n$,边为$m$,直径为$D$,成本和容量以$\text{poly} n$为界。在本文中,我们展示了如何在$n^{1/2+o(1)}(\sqrt{n}+D)$轮中找到最小成本流问题的精确解,通过运行时间$m^{3/7+o(1)}(\sqrt nD^{1/4}+D)$提高了当前算法的状态[Forster等人]。FOCS 2021],它只适用于单位容量图的特殊情况。对于某些图形,我们甚至获得了更好的结果。特别是,对于平面图、扩展图、$n^{o(1)}$ -属图、$n^{o(1)}$ -树宽图和排除小图,我们的算法需要$n^{1/2+o(1)}D$轮。我们通过结合最近在CONGEST模型中的拉普拉斯解算器上的结果得到了这个结果[Forster等人]。FOCS 2021, Anagnostides等。DISC 2022]与Lee和Sidford [FOCS 2014]的LP求解器的CONGEST实现,并最终表明我们可以将近似解四舍五入为精确解。我们的算法解决了一定的线性规划,它推广了最小成本流,直到$n^{1/2+o(1)}(\sqrt{n}+D)\log^3 (1/\epsilon)$轮的加性误差$\epsilon$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信