Comparison of CNN-LSTM in Sentiment Analysis for Hindi Mix Language

Manish Rao Ghatge, S. Barde
{"title":"Comparison of CNN-LSTM in Sentiment Analysis for Hindi Mix Language","authors":"Manish Rao Ghatge, S. Barde","doi":"10.1109/ICTACS56270.2022.9988531","DOIUrl":null,"url":null,"abstract":"Despite the fact that Hindi is spoken by over 490 million people globally and social media is producing a massive quantity of Hindi data on a daily basis, few research studies and initiatives to develop Hindi language resources and assess user sentiments have been accomplished. The study's major objectives are to (1) develop Hindi-English-Chhattisgarhi dataset for agriculturist's sentiment analysis and (2) assess multiple approaches of sentiment analysis through deep putting the deep learning classifiers into action (1D-CNN and LSTM).","PeriodicalId":385163,"journal":{"name":"2022 2nd International Conference on Technological Advancements in Computational Sciences (ICTACS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 2nd International Conference on Technological Advancements in Computational Sciences (ICTACS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTACS56270.2022.9988531","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Despite the fact that Hindi is spoken by over 490 million people globally and social media is producing a massive quantity of Hindi data on a daily basis, few research studies and initiatives to develop Hindi language resources and assess user sentiments have been accomplished. The study's major objectives are to (1) develop Hindi-English-Chhattisgarhi dataset for agriculturist's sentiment analysis and (2) assess multiple approaches of sentiment analysis through deep putting the deep learning classifiers into action (1D-CNN and LSTM).
CNN-LSTM在印地语混合语言情感分析中的比较
尽管全球有超过4.9亿人说印地语,社交媒体每天都在产生大量的印地语数据,但很少有研究和倡议开发印地语资源和评估用户情绪。该研究的主要目标是:(1)开发用于农业学家情感分析的印地语-英语-恰蒂斯加尔语数据集;(2)通过深度学习分类器(1D-CNN和LSTM)对情感分析的多种方法进行评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信