Cynthia

Haoyue Zheng, Fei Xu, Li Chen, Zhi Zhou, Fangming Liu
{"title":"Cynthia","authors":"Haoyue Zheng, Fei Xu, Li Chen, Zhi Zhou, Fangming Liu","doi":"10.1145/3337821.3337873","DOIUrl":null,"url":null,"abstract":"It becomes an increasingly popular trend for deep neural networks with large-scale datasets to be trained in a distributed manner in the cloud. However, widely known as resource-intensive and time-consuming, distributed deep neural network (DDNN) training suffers from unpredictable performance in the cloud, due to the intricate factors of resource bottleneck, heterogeneity and the imbalance of computation and communication which eventually cause severe resource under-utilization. In this paper, we propose Cynthia, a cost-efficient cloud resource provisioning framework to provide predictable DDNN training performance and reduce the training budget. To explicitly explore the resource bottleneck and heterogeneity, Cynthia predicts the DDNN training time by leveraging a lightweight analytical performance model based on the resource consumption of workers and parameter servers. With an accurate performance prediction, Cynthia is able to optimally provision the cost-efficient cloud instances to jointly guarantee the training performance and minimize the training budget. We implement Cynthia on top of Kubernetes by launching a 56-docker cluster to train four representative DNN models. Extensive prototype experiments on Amazon EC2 demonstrate that Cynthia can provide predictable training performance while reducing the monetary cost for DDNN workloads by up to 50.6%, in comparison to state-of-the-art resource provisioning strategies, yet with acceptable runtime overhead.","PeriodicalId":405273,"journal":{"name":"Proceedings of the 48th International Conference on Parallel Processing","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 48th International Conference on Parallel Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3337821.3337873","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

It becomes an increasingly popular trend for deep neural networks with large-scale datasets to be trained in a distributed manner in the cloud. However, widely known as resource-intensive and time-consuming, distributed deep neural network (DDNN) training suffers from unpredictable performance in the cloud, due to the intricate factors of resource bottleneck, heterogeneity and the imbalance of computation and communication which eventually cause severe resource under-utilization. In this paper, we propose Cynthia, a cost-efficient cloud resource provisioning framework to provide predictable DDNN training performance and reduce the training budget. To explicitly explore the resource bottleneck and heterogeneity, Cynthia predicts the DDNN training time by leveraging a lightweight analytical performance model based on the resource consumption of workers and parameter servers. With an accurate performance prediction, Cynthia is able to optimally provision the cost-efficient cloud instances to jointly guarantee the training performance and minimize the training budget. We implement Cynthia on top of Kubernetes by launching a 56-docker cluster to train four representative DNN models. Extensive prototype experiments on Amazon EC2 demonstrate that Cynthia can provide predictable training performance while reducing the monetary cost for DDNN workloads by up to 50.6%, in comparison to state-of-the-art resource provisioning strategies, yet with acceptable runtime overhead.
辛西娅
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信