Box Particle Control for Aerospace Vehicles Guidance Under Failure Probability Constraints

Nicolas Merlinge, N. Horri, K. Dahia, H. Piet-Lahanier, J. Brusey
{"title":"Box Particle Control for Aerospace Vehicles Guidance Under Failure Probability Constraints","authors":"Nicolas Merlinge, N. Horri, K. Dahia, H. Piet-Lahanier, J. Brusey","doi":"10.1109/CONTROL.2018.8516773","DOIUrl":null,"url":null,"abstract":"Determining a constrained optimal trajectory remains tricky when the state suffers non-analytical uncertainty and when the feasible set is non-convex. This paper presents a chance constrained trajectory planning approach, called Box Particle Control (BPC), which guarantees an a priori specified maximum probability of constraints violation along a predicted trajectory. This failure probability is estimated by approximating the state density with a mixture of bounded kernels, defined by weighted box particles, and is used as a constraint in an optimization scheme. Numerical simulations illustrate the performance of BPC, which ensures the constraints satisfaction even for low numbers of box particles. The BPC makes it possible to tackle non-analytic state densities (e.g., multimodalities) and non-convex feasible sets with a higher robustness and a 60% lower computational load than previous approaches in terms of number of elementary operations.","PeriodicalId":266112,"journal":{"name":"2018 UKACC 12th International Conference on Control (CONTROL)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 UKACC 12th International Conference on Control (CONTROL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CONTROL.2018.8516773","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Determining a constrained optimal trajectory remains tricky when the state suffers non-analytical uncertainty and when the feasible set is non-convex. This paper presents a chance constrained trajectory planning approach, called Box Particle Control (BPC), which guarantees an a priori specified maximum probability of constraints violation along a predicted trajectory. This failure probability is estimated by approximating the state density with a mixture of bounded kernels, defined by weighted box particles, and is used as a constraint in an optimization scheme. Numerical simulations illustrate the performance of BPC, which ensures the constraints satisfaction even for low numbers of box particles. The BPC makes it possible to tackle non-analytic state densities (e.g., multimodalities) and non-convex feasible sets with a higher robustness and a 60% lower computational load than previous approaches in terms of number of elementary operations.
失效概率约束下航天飞行器制导的盒粒子控制
当状态存在非解析不确定性和可行集非凸时,确定约束最优轨迹仍然是棘手的。本文提出了一种概率约束的轨迹规划方法,称为盒粒子控制(Box Particle Control, BPC),该方法可以保证在预测轨迹上先验地指定最大违逆约束的概率。该失效概率通过用加权盒状粒子定义的有界核的混合近似状态密度来估计,并用作优化方案中的约束。数值模拟结果表明,该方法即使在低盒状粒子数的情况下也能满足约束条件。BPC可以处理非解析状态密度(例如,多模态)和非凸可行集,具有更高的鲁棒性,并且在基本操作数量方面比以前的方法降低了60%的计算负荷。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信