USK-COFFEE Dataset: A Multi-Class Green Arabica Coffee Bean Dataset for Deep Learning

Alifya Febriana, K. Muchtar, R. Dawood, Chih-Yang Lin
{"title":"USK-COFFEE Dataset: A Multi-Class Green Arabica Coffee Bean Dataset for Deep Learning","authors":"Alifya Febriana, K. Muchtar, R. Dawood, Chih-Yang Lin","doi":"10.1109/CyberneticsCom55287.2022.9865489","DOIUrl":null,"url":null,"abstract":"Coffee is one of the plantation commodities that plays a big role in the world economy. According to the classification of coffee, each type of coffee has various shapes and textures. Traditional human visual sorting of coffee beans is time-consuming, labor-intensive, and may result in low-quality coffee due to work stress and exhaustion. The contribution of this paper is twofold. First, a new dataset, called USK-Coffee, which contains a total of 8.000 images and is divided into 4 classes, is created and made publicly available. To the best of our knowledge, the USK-Coffee dataset is currently the most comprehensive green coffee bean dataset. Second, this study aims to offer a lightweight and understandable intelligent coffee bean sort accurately system that uses deep learning (DL) to assist farmers in sorting green bean arabica by variety. To be specific, this paper presents a baseline for classification performance on the dataset using the benchmark deep learning models, MobileNetV2, and ResNet-18. These models achieved an average classification accuracy of 81.31% and 81.12%, respectively. The dataset is available at: http://comvis.unsyiah.ac.id/usk-coffee/","PeriodicalId":178279,"journal":{"name":"2022 IEEE International Conference on Cybernetics and Computational Intelligence (CyberneticsCom)","volume":"214 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Cybernetics and Computational Intelligence (CyberneticsCom)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CyberneticsCom55287.2022.9865489","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Coffee is one of the plantation commodities that plays a big role in the world economy. According to the classification of coffee, each type of coffee has various shapes and textures. Traditional human visual sorting of coffee beans is time-consuming, labor-intensive, and may result in low-quality coffee due to work stress and exhaustion. The contribution of this paper is twofold. First, a new dataset, called USK-Coffee, which contains a total of 8.000 images and is divided into 4 classes, is created and made publicly available. To the best of our knowledge, the USK-Coffee dataset is currently the most comprehensive green coffee bean dataset. Second, this study aims to offer a lightweight and understandable intelligent coffee bean sort accurately system that uses deep learning (DL) to assist farmers in sorting green bean arabica by variety. To be specific, this paper presents a baseline for classification performance on the dataset using the benchmark deep learning models, MobileNetV2, and ResNet-18. These models achieved an average classification accuracy of 81.31% and 81.12%, respectively. The dataset is available at: http://comvis.unsyiah.ac.id/usk-coffee/
USK-COFFEE数据集:用于深度学习的多类绿阿拉比卡咖啡豆数据集
咖啡是在世界经济中扮演重要角色的种植商品之一。根据咖啡的分类,每一种咖啡都有不同的形状和质地。传统的人工视觉分拣咖啡豆耗时耗力,还可能因工作压力大、疲惫不堪而导致咖啡质量低下。本文的贡献是双重的。首先,一个名为USK-Coffee的新数据集被创建并公开,该数据集共包含8000张图像,分为4类。据我们所知,USK-Coffee数据集是目前最全面的生咖啡豆数据集。其次,本研究旨在提供一种轻量级且易于理解的智能咖啡豆精确分类系统,该系统使用深度学习(DL)来帮助农民按品种对阿拉比卡绿豆进行分类。具体来说,本文使用基准深度学习模型MobileNetV2和ResNet-18在数据集上提出了分类性能的基线。这些模型的平均分类准确率分别为81.31%和81.12%。该数据集可从http://comvis.unsyiah.ac.id/usk-coffee/获取
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信