Enabling A Load Adaptive Distributed Stream Processing Platform on Synchronized Clusters

Xing Wu, Yan Liu
{"title":"Enabling A Load Adaptive Distributed Stream Processing Platform on Synchronized Clusters","authors":"Xing Wu, Yan Liu","doi":"10.1109/IC2E.2014.87","DOIUrl":null,"url":null,"abstract":"Distributed stream processing (DSP) platforms enable simplified development of applications that can process continuous unbounded streams of data at a high speed. Leveraging large scale cluster management frameworks, DSP can scale to analyze data in real-time with different types of operators, each running on a cluster node. The scalability and resource utilization depend on the allocation of operators on clusters. Since the data volume and rate can be unpredictable, static mapping between operators and cluster resources results in unbalanced operator load distribution. This paper proposes a software layer that is load-adaptive between a DSP platform and clusters. It allows dynamic transferring of an operator to different cluster nodes at runtime and keeps the process transparent to developers. We present a prototype implemented on Yahoo's S4. Our implementation is evaluated by a top-N topic list application on Twitter streams. The results demonstrate improved stream processing throughputs and cluster resource utilization.","PeriodicalId":273902,"journal":{"name":"2014 IEEE International Conference on Cloud Engineering","volume":"135 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Cloud Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IC2E.2014.87","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Distributed stream processing (DSP) platforms enable simplified development of applications that can process continuous unbounded streams of data at a high speed. Leveraging large scale cluster management frameworks, DSP can scale to analyze data in real-time with different types of operators, each running on a cluster node. The scalability and resource utilization depend on the allocation of operators on clusters. Since the data volume and rate can be unpredictable, static mapping between operators and cluster resources results in unbalanced operator load distribution. This paper proposes a software layer that is load-adaptive between a DSP platform and clusters. It allows dynamic transferring of an operator to different cluster nodes at runtime and keeps the process transparent to developers. We present a prototype implemented on Yahoo's S4. Our implementation is evaluated by a top-N topic list application on Twitter streams. The results demonstrate improved stream processing throughputs and cluster resource utilization.
在同步集群上启用负载自适应分布式流处理平台
分布式流处理(DSP)平台简化了应用程序的开发,可以高速处理连续的无界数据流。利用大规模集群管理框架,DSP可以扩展到与不同类型的运营商实时分析数据,每个运营商在集群节点上运行。可扩展性和资源利用率取决于操作符在集群上的分配。由于数据量和速率不可预测,运营商和集群资源之间的静态映射导致运营商负载分布不平衡。本文提出了一种DSP平台与集群之间负载自适应的软件层。它允许在运行时将操作符动态地转移到不同的集群节点,并使流程对开发人员保持透明。我们展示了一个在雅虎S4上实现的原型。我们的实现通过Twitter流上的top-N主题列表应用程序进行评估。结果表明,改进的流处理吞吐量和集群资源利用率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信