Multi-muscle force estimation using data fusion and HD-sEMG: An experimental study

M. A. Harrach, S. Boudaoud, V. Carriou, F. Marin
{"title":"Multi-muscle force estimation using data fusion and HD-sEMG: An experimental study","authors":"M. A. Harrach, S. Boudaoud, V. Carriou, F. Marin","doi":"10.1109/ICABME.2017.8167529","DOIUrl":null,"url":null,"abstract":"This paper presents a new multi-muscle force estimation approach based on a HD-sEMG/force model in experimental context. Accordingly, we will try to estimate the muscle force of the three elbow flexors: Biceps Brachii (BB), Brachialis (BR) and Brachioradialis (BRD) in isometric isotonic conditions. This will be done by using a recently proposed sEMG/force equation model validated by simulation. For representing muscle activation, we will the sEMG Root Mean Squared value acquired after data fusion via Watershed image segmentation algorithm. This data fusion method allows us to obtain one RMS value per force level from the sEMG signals recorded from the HD-sEMG grids putted on each one of the three considered muscles. Five subjects participated in the experimental protocol, where we recorded the force simultaneously with the HD-sEMG signals for 9 contraction levels. After solving a linear equation system, the force of each muscle is estimated. Obtained results shown different muscle activation synergies with the dominance of the BB muscle. Finally, the feasibility of this approach is demonstrated in solving the load sharing problem in isometric isotonic context.","PeriodicalId":426559,"journal":{"name":"2017 Fourth International Conference on Advances in Biomedical Engineering (ICABME)","volume":"135 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Fourth International Conference on Advances in Biomedical Engineering (ICABME)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICABME.2017.8167529","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

This paper presents a new multi-muscle force estimation approach based on a HD-sEMG/force model in experimental context. Accordingly, we will try to estimate the muscle force of the three elbow flexors: Biceps Brachii (BB), Brachialis (BR) and Brachioradialis (BRD) in isometric isotonic conditions. This will be done by using a recently proposed sEMG/force equation model validated by simulation. For representing muscle activation, we will the sEMG Root Mean Squared value acquired after data fusion via Watershed image segmentation algorithm. This data fusion method allows us to obtain one RMS value per force level from the sEMG signals recorded from the HD-sEMG grids putted on each one of the three considered muscles. Five subjects participated in the experimental protocol, where we recorded the force simultaneously with the HD-sEMG signals for 9 contraction levels. After solving a linear equation system, the force of each muscle is estimated. Obtained results shown different muscle activation synergies with the dominance of the BB muscle. Finally, the feasibility of this approach is demonstrated in solving the load sharing problem in isometric isotonic context.
基于数据融合和HD-sEMG的多肌肉力估计实验研究
在实验环境下,提出了一种基于HD-sEMG/力模型的多肌肉力估计方法。因此,我们将尝试估计三个肘关节屈肌:肱二头肌(BB),肱肌(BR)和肱桡肌(BRD)在等长等张条件下的肌肉力量。这将通过使用最近提出的经过仿真验证的表面肌电信号/力方程模型来完成。为了表示肌肉的激活,我们将使用分水岭图像分割算法进行数据融合后得到的表面肌电信号均方根值。这种数据融合方法使我们能够从从放置在三个考虑的肌肉上的HD-sEMG网格记录的表面肌电信号中获得每个力水平的均方根值。5名受试者参与了实验方案,我们同时记录了9个收缩水平的力和HD-sEMG信号。在求解线性方程组后,估计每块肌肉的力。结果表明,不同的肌肉激活协同作用以BB肌为主。最后,在求解等距等压环境下负荷分担问题时,验证了该方法的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信