A Combined Fusion and Data Mining Framework for the Detection of Botnets

A. Kiayias, Justin Neumann, D. Walluck, Owen McCusker
{"title":"A Combined Fusion and Data Mining Framework for the Detection of Botnets","authors":"A. Kiayias, Justin Neumann, D. Walluck, Owen McCusker","doi":"10.1109/CATCH.2009.9","DOIUrl":null,"url":null,"abstract":"This paper describes a combined fusion and miningframework applied to the detection of stealthy botnets.The framework leverages a fusion engine thattracks hosts through the use of feature-based profilesgenerated from multiple network sensor types. Theseprofiles are classified and correlated based on a setof known host profiles, e.g., web servers, mail servers,and bot behavioral characteristics. A mining enginediscovers emergent threat profiles and delivers themto the fusion engine for processing. We describe thedistributed nature of botnets and how they are createdand managed. We then describe a combined fusion andmining model that builds on recent work in the cybersecurity domain. The framework we present employsan adaptive fusion system driven by a mining systemfocused on the discovery of new threats. We concludewith a discussion of experimental results, deploymentissues, and a summary of our arguments.","PeriodicalId":130933,"journal":{"name":"2009 Cybersecurity Applications & Technology Conference for Homeland Security","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Cybersecurity Applications & Technology Conference for Homeland Security","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CATCH.2009.9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

This paper describes a combined fusion and miningframework applied to the detection of stealthy botnets.The framework leverages a fusion engine thattracks hosts through the use of feature-based profilesgenerated from multiple network sensor types. Theseprofiles are classified and correlated based on a setof known host profiles, e.g., web servers, mail servers,and bot behavioral characteristics. A mining enginediscovers emergent threat profiles and delivers themto the fusion engine for processing. We describe thedistributed nature of botnets and how they are createdand managed. We then describe a combined fusion andmining model that builds on recent work in the cybersecurity domain. The framework we present employsan adaptive fusion system driven by a mining systemfocused on the discovery of new threats. We concludewith a discussion of experimental results, deploymentissues, and a summary of our arguments.
基于融合和数据挖掘的僵尸网络检测框架
本文描述了一种融合和挖掘相结合的框架,用于检测隐身僵尸网络。该框架利用融合引擎,通过使用从多种网络传感器类型生成的基于特征的配置文件来吸引主机。这些配置文件是根据一组已知的主机配置文件进行分类和关联的,例如,web服务器、邮件服务器和bot行为特征。挖掘引擎发现紧急的威胁配置文件,并将其交付给融合引擎进行处理。我们描述了僵尸网络的分布式特性以及它们是如何创建和管理的。然后,我们描述了一个基于网络安全领域最新工作的融合和挖掘组合模型。我们提出的框架采用了一个自适应融合系统,该系统由一个专注于发现新威胁的挖掘系统驱动。最后,我们讨论了实验结果、部署问题,并总结了我们的论点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信