Optimal design of passive gamma-ray spectrometers

K. Jarman, L. Smith, A. Heredia-Langner, A.R. Renholds, W. Kaye, S. Miller
{"title":"Optimal design of passive gamma-ray spectrometers","authors":"K. Jarman, L. Smith, A. Heredia-Langner, A.R. Renholds, W. Kaye, S. Miller","doi":"10.1109/NSSMIC.2005.1596435","DOIUrl":null,"url":null,"abstract":"Passive gamma-ray spectrometers composed of attenuation filters and integrating detector materials provide important advantages in terms of zero-power operation and ruggedness for long-term monitoring scenarios (e.g. national security or environmental remediation). However, the many design parameters, including attenuation filter material and thickness and number of pixels (filter/integrating material combinations), present a challenging optimization problem in designing spectrometers for different applications. In many of these applications, the goal is simply one of anomaly detection deciding that there is a gamma-ray source not normally found in the nuisance source populations of that particular measurement environment. A passive spectrometer design study approach using an anomaly detection metric is presented here, and is founded on \"injecting\" target sources of interest (e.g. 57Co, 133Ba, 137Cs) into a nuisance source population that represents the widely varying backgrounds typical of long-term monitoring scenarios. The design evaluation metric is quantified by the probability of detection given a required probability of false alarm. A genetic algorithm employs this metric to probe the large design space and identify superior spectrometer designs","PeriodicalId":105619,"journal":{"name":"IEEE Nuclear Science Symposium Conference Record, 2005","volume":"91 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Nuclear Science Symposium Conference Record, 2005","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NSSMIC.2005.1596435","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Passive gamma-ray spectrometers composed of attenuation filters and integrating detector materials provide important advantages in terms of zero-power operation and ruggedness for long-term monitoring scenarios (e.g. national security or environmental remediation). However, the many design parameters, including attenuation filter material and thickness and number of pixels (filter/integrating material combinations), present a challenging optimization problem in designing spectrometers for different applications. In many of these applications, the goal is simply one of anomaly detection deciding that there is a gamma-ray source not normally found in the nuisance source populations of that particular measurement environment. A passive spectrometer design study approach using an anomaly detection metric is presented here, and is founded on "injecting" target sources of interest (e.g. 57Co, 133Ba, 137Cs) into a nuisance source population that represents the widely varying backgrounds typical of long-term monitoring scenarios. The design evaluation metric is quantified by the probability of detection given a required probability of false alarm. A genetic algorithm employs this metric to probe the large design space and identify superior spectrometer designs
无源伽玛能谱仪的优化设计
由衰减滤波器和集成探测器材料组成的无源伽马能谱仪在零功率运行和坚固耐用方面具有重要优势,适用于长期监测场景(例如国家安全或环境修复)。然而,许多设计参数,包括衰减滤波材料、厚度和像素数量(滤波器/集成材料组合),在设计不同应用的光谱仪时提出了一个具有挑战性的优化问题。在许多此类应用中,目标仅仅是异常检测之一,确定在特定测量环境的干扰源种群中存在通常未发现的伽马射线源。本文提出了一种使用异常检测度量的被动光谱仪设计研究方法,该方法是建立在将感兴趣的目标源(例如57Co, 133Ba, 137Cs)“注入”到代表长期监测场景的典型背景的干扰源种群中。设计评价指标通过给定虚警概率的检测概率来量化。一种遗传算法利用这一度量来探测较大的设计空间,并确定更好的光谱仪设计
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信