Joint Spectrum Allocation and Power Control in Vehicular Networks Based on Reinforcement Learning

K. Wang, Yeqing Feng, Le Liang, Shi Jin
{"title":"Joint Spectrum Allocation and Power Control in Vehicular Networks Based on Reinforcement Learning","authors":"K. Wang, Yeqing Feng, Le Liang, Shi Jin","doi":"10.1109/ISWCS56560.2022.9940399","DOIUrl":null,"url":null,"abstract":"In this paper, we investigate the joint channel al-location and power control problem in vehicular networks. Considering the different quality-of-service (QoS) requirements for vehicle-to-infrastructure (V2I) and vehicle-to-vehicle (V2V) links, we transform the optimization problem using reinforcement learning (RL) and then propose a distributed resource allocation scheme based on the deep Q network (DQN) and deep determin-istic policy gradient (DDPG), which enables joint optimization of continuous power control and discrete channel allocation. Additionally, we consider the reward fluctuation caused by the strong dynamics of vehicular networks, and propose the advantage reward to alleviate this instability. Simulation results demonstrate that the proposed DQN-DDPG based resource allocation algorithm improves both the total capacity of V2I links and the payload delivery rate of V2V links, achieving higher QoS satisfaction compared to other baselines.","PeriodicalId":141258,"journal":{"name":"2022 International Symposium on Wireless Communication Systems (ISWCS)","volume":"88 40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Symposium on Wireless Communication Systems (ISWCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISWCS56560.2022.9940399","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we investigate the joint channel al-location and power control problem in vehicular networks. Considering the different quality-of-service (QoS) requirements for vehicle-to-infrastructure (V2I) and vehicle-to-vehicle (V2V) links, we transform the optimization problem using reinforcement learning (RL) and then propose a distributed resource allocation scheme based on the deep Q network (DQN) and deep determin-istic policy gradient (DDPG), which enables joint optimization of continuous power control and discrete channel allocation. Additionally, we consider the reward fluctuation caused by the strong dynamics of vehicular networks, and propose the advantage reward to alleviate this instability. Simulation results demonstrate that the proposed DQN-DDPG based resource allocation algorithm improves both the total capacity of V2I links and the payload delivery rate of V2V links, achieving higher QoS satisfaction compared to other baselines.
基于强化学习的车联网联合频谱分配与功率控制
本文研究了车载网络中的联合信道定位和功率控制问题。考虑到车到基础设施(V2I)和车到车(V2V)链路对服务质量(QoS)的不同要求,采用强化学习(RL)对优化问题进行了转化,提出了一种基于深度Q网络(DQN)和深度确定性策略梯度(DDPG)的分布式资源分配方案,实现了连续功率控制和离散信道分配的联合优化。此外,我们考虑了车辆网络的强动态性引起的奖励波动,并提出了优势奖励来缓解这种不稳定性。仿真结果表明,提出的基于DQN-DDPG的资源分配算法提高了V2I链路的总容量和V2V链路的有效载荷投递率,与其他基线相比,实现了更高的QoS满意度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信