Genetic algorithms for evolving deep neural networks

E. David, Iddo Greental
{"title":"Genetic algorithms for evolving deep neural networks","authors":"E. David, Iddo Greental","doi":"10.1145/2598394.2602287","DOIUrl":null,"url":null,"abstract":"In recent years, deep learning methods applying unsupervised learning to train deep layers of neural networks have achieved remarkable results in numerous fields. In the past, many genetic algorithms based methods have been successfully applied to training neural networks. In this paper, we extend previous work and propose a GA-assisted method for deep learning. Our experimental results indicate that this GA-assisted approach improves the performance of a deep autoencoder, producing a sparser neural network.","PeriodicalId":298232,"journal":{"name":"Proceedings of the Companion Publication of the 2014 Annual Conference on Genetic and Evolutionary Computation","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"118","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Companion Publication of the 2014 Annual Conference on Genetic and Evolutionary Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2598394.2602287","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 118

Abstract

In recent years, deep learning methods applying unsupervised learning to train deep layers of neural networks have achieved remarkable results in numerous fields. In the past, many genetic algorithms based methods have been successfully applied to training neural networks. In this paper, we extend previous work and propose a GA-assisted method for deep learning. Our experimental results indicate that this GA-assisted approach improves the performance of a deep autoencoder, producing a sparser neural network.
进化深度神经网络的遗传算法
近年来,应用无监督学习来训练深层神经网络的深度学习方法在许多领域都取得了显著的成果。在过去,许多基于遗传算法的方法已经成功地应用于神经网络的训练。在本文中,我们扩展了以前的工作,并提出了一种ga辅助的深度学习方法。我们的实验结果表明,这种ga辅助方法提高了深度自编码器的性能,产生了更稀疏的神经网络。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信