Using Gradient Orientation to Improve Least Squares Line Fitting

T. Petković, S. Lončarić
{"title":"Using Gradient Orientation to Improve Least Squares Line Fitting","authors":"T. Petković, S. Lončarić","doi":"10.1109/CRV.2014.38","DOIUrl":null,"url":null,"abstract":"Straight line fitting is an important problem in computer and robot vision. We propose a novel method for least squares line fitting that uses both the point coordinates and the local gradient orientation to fit an optimal line by minimizing the proposed algebraic distance. The proposed inclusion of gradient orientation offers several advantages: (a) one data point is sufficient for the line fit, (b) for the same number of points the fit is more precise due to inclusion of gradient orientation, and (c) outliers can be rejected based on the gradient orientation or the distance to line.","PeriodicalId":385422,"journal":{"name":"2014 Canadian Conference on Computer and Robot Vision","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 Canadian Conference on Computer and Robot Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CRV.2014.38","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Straight line fitting is an important problem in computer and robot vision. We propose a novel method for least squares line fitting that uses both the point coordinates and the local gradient orientation to fit an optimal line by minimizing the proposed algebraic distance. The proposed inclusion of gradient orientation offers several advantages: (a) one data point is sufficient for the line fit, (b) for the same number of points the fit is more precise due to inclusion of gradient orientation, and (c) outliers can be rejected based on the gradient orientation or the distance to line.
利用梯度方向改进最小二乘拟合
直线拟合是计算机和机器人视觉中的一个重要问题。我们提出了一种新的最小二乘线拟合方法,该方法使用点坐标和局部梯度方向通过最小化所提出的代数距离来拟合最优线。提出的包含梯度方向的方法有几个优点:(a)一个数据点足以进行线拟合,(b)对于相同数量的点,由于包含梯度方向,拟合更加精确,(c)可以根据梯度方向或到线的距离拒绝异常值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信