Temporal Customer Segmentation Using the Self-organizing Time Map

Zhiyuan Yao, Peter Sarlin, T. Eklund, B. Back
{"title":"Temporal Customer Segmentation Using the Self-organizing Time Map","authors":"Zhiyuan Yao, Peter Sarlin, T. Eklund, B. Back","doi":"10.1109/IV.2012.47","DOIUrl":null,"url":null,"abstract":"Visual clustering provides effective tools for understanding relationships among clusters in a data space. This paper applies an adaptation of the standard Self-Organizing Map for visual temporal clustering in exploring the customer base and tracking customer behavior of a department store over a 22-week period. In contrast to traditional clustering techniques, which often provide a static snapshot of the customer base and overlook the possible dynamics, the Self-Organizing Time Map enables exploring complex patterns over time by visualizing the results in a user-friendly way. We demonstrate the effectiveness of the application using department store data with more than half a million rows of weekly aggregated customer information.","PeriodicalId":264951,"journal":{"name":"2012 16th International Conference on Information Visualisation","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 16th International Conference on Information Visualisation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IV.2012.47","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Visual clustering provides effective tools for understanding relationships among clusters in a data space. This paper applies an adaptation of the standard Self-Organizing Map for visual temporal clustering in exploring the customer base and tracking customer behavior of a department store over a 22-week period. In contrast to traditional clustering techniques, which often provide a static snapshot of the customer base and overlook the possible dynamics, the Self-Organizing Time Map enables exploring complex patterns over time by visualizing the results in a user-friendly way. We demonstrate the effectiveness of the application using department store data with more than half a million rows of weekly aggregated customer information.
使用自组织时间图的时间客户细分
可视化聚类为理解数据空间中集群之间的关系提供了有效的工具。本文将标准的自组织地图应用于视觉时间聚类,以探索客户群并跟踪百货商店在22周期间的客户行为。传统的聚类技术通常提供客户基础的静态快照,而忽略了可能的动态,与之相反,自组织时间图可以通过以用户友好的方式将结果可视化,从而随着时间的推移探索复杂的模式。我们使用百货商店数据(每周汇总的客户信息超过50万行)来演示该应用程序的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信