{"title":"Temporal Customer Segmentation Using the Self-organizing Time Map","authors":"Zhiyuan Yao, Peter Sarlin, T. Eklund, B. Back","doi":"10.1109/IV.2012.47","DOIUrl":null,"url":null,"abstract":"Visual clustering provides effective tools for understanding relationships among clusters in a data space. This paper applies an adaptation of the standard Self-Organizing Map for visual temporal clustering in exploring the customer base and tracking customer behavior of a department store over a 22-week period. In contrast to traditional clustering techniques, which often provide a static snapshot of the customer base and overlook the possible dynamics, the Self-Organizing Time Map enables exploring complex patterns over time by visualizing the results in a user-friendly way. We demonstrate the effectiveness of the application using department store data with more than half a million rows of weekly aggregated customer information.","PeriodicalId":264951,"journal":{"name":"2012 16th International Conference on Information Visualisation","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 16th International Conference on Information Visualisation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IV.2012.47","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
Visual clustering provides effective tools for understanding relationships among clusters in a data space. This paper applies an adaptation of the standard Self-Organizing Map for visual temporal clustering in exploring the customer base and tracking customer behavior of a department store over a 22-week period. In contrast to traditional clustering techniques, which often provide a static snapshot of the customer base and overlook the possible dynamics, the Self-Organizing Time Map enables exploring complex patterns over time by visualizing the results in a user-friendly way. We demonstrate the effectiveness of the application using department store data with more than half a million rows of weekly aggregated customer information.