Intrusion Detection using Dense Neural Network in Network System

Aman Doherey, Akansha Singh, Arun Kumar
{"title":"Intrusion Detection using Dense Neural Network in Network System","authors":"Aman Doherey, Akansha Singh, Arun Kumar","doi":"10.1109/CyberneticsCom55287.2022.9865436","DOIUrl":null,"url":null,"abstract":"An Network Intrusion Detection System can be perceived as a device, either software or hardware which is utilized to screen the organization for suspicious action or policy violation. In this era of digitization where everyone is using computers for all types of communications- personal, political, financial, etc., it becomes necessary to ensure that the medium of the communication is secure or not. Because nowadays every small scale enterprise, big companies, even personal households are having their own server. The new technologies are based on the concept of networking. So, an intrusion in such networks can cause bid risks like data breach financial risk or malfunctioning of the devices connected in that network. It might be possible for small networks to be checked manually because the total connection in such networks is less, but when it comes to the big networks where a lot of connections are sending and receiving requests, it is near to impossible for someone to check all the connections manually. In this paper dense neural network are used for detecting the network intrusion and NSL-KDD dataset are used to test the model. The proposed model achieved 98.29% accuracy.","PeriodicalId":178279,"journal":{"name":"2022 IEEE International Conference on Cybernetics and Computational Intelligence (CyberneticsCom)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Cybernetics and Computational Intelligence (CyberneticsCom)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CyberneticsCom55287.2022.9865436","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

An Network Intrusion Detection System can be perceived as a device, either software or hardware which is utilized to screen the organization for suspicious action or policy violation. In this era of digitization where everyone is using computers for all types of communications- personal, political, financial, etc., it becomes necessary to ensure that the medium of the communication is secure or not. Because nowadays every small scale enterprise, big companies, even personal households are having their own server. The new technologies are based on the concept of networking. So, an intrusion in such networks can cause bid risks like data breach financial risk or malfunctioning of the devices connected in that network. It might be possible for small networks to be checked manually because the total connection in such networks is less, but when it comes to the big networks where a lot of connections are sending and receiving requests, it is near to impossible for someone to check all the connections manually. In this paper dense neural network are used for detecting the network intrusion and NSL-KDD dataset are used to test the model. The proposed model achieved 98.29% accuracy.
网络系统中的密集神经网络入侵检测
网络入侵检测系统可以被视为一种设备,无论是软件还是硬件,用于筛选组织的可疑行为或策略违反。在这个数字化的时代,每个人都在使用计算机进行各种类型的通信-个人,政治,金融等,因此有必要确保通信媒介的安全与否。因为现在每个小型企业,大公司,甚至个人家庭都有自己的服务器。这些新技术是基于网络概念的。因此,对此类网络的入侵可能会导致数据泄露、财务风险或网络连接设备故障等风险。对于小型网络来说,手动检查是可能的,因为此类网络中的总连接较少,但是当涉及到大量连接正在发送和接收请求的大型网络时,人工检查所有连接几乎是不可能的。本文采用密集神经网络进行网络入侵检测,并利用NSL-KDD数据集对模型进行测试。该模型的准确率达到98.29%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信