Writer adaptation techniques in off-line cursive word recognition

A. Vinciarelli, Samy Bengio
{"title":"Writer adaptation techniques in off-line cursive word recognition","authors":"A. Vinciarelli, Samy Bengio","doi":"10.1109/IWFHR.2002.1030924","DOIUrl":null,"url":null,"abstract":"This work presents the application of HMM adaptation techniques to the problem of off-line cursive script recognition. Instead of training a new model for each writer one first creates a unique model with a mixed database and then adapts it for each different writer using his own small dataset. Experiments on a publicly available benchmark database show that an adapted system has an accuracy higher than 80% even when less than 30 word samples are used during adaptation, while a system trained using the data of the single writer only needs at least 200 words (the estimate is a lower bound) in order to achieve the same performance as the adapted models.","PeriodicalId":114017,"journal":{"name":"Proceedings Eighth International Workshop on Frontiers in Handwriting Recognition","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Eighth International Workshop on Frontiers in Handwriting Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWFHR.2002.1030924","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

This work presents the application of HMM adaptation techniques to the problem of off-line cursive script recognition. Instead of training a new model for each writer one first creates a unique model with a mixed database and then adapts it for each different writer using his own small dataset. Experiments on a publicly available benchmark database show that an adapted system has an accuracy higher than 80% even when less than 30 word samples are used during adaptation, while a system trained using the data of the single writer only needs at least 200 words (the estimate is a lower bound) in order to achieve the same performance as the adapted models.
离线草书词识别中的写作者改编技术
本文提出了HMM自适应技术在离线草书识别中的应用。不是为每个作家训练一个新模型,而是首先使用混合数据库创建一个独特的模型,然后使用自己的小数据集对每个不同的作家进行调整。在一个公开可用的基准数据库上的实验表明,即使在适应过程中使用的单词样本少于30个,适应性系统的准确率也高于80%,而使用单个作者的数据训练的系统只需要至少200个单词(估计是一个下界)就可以达到与适应性模型相同的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信