Brain tissue segmentation using an unsupervised clustering technique based on PSO algorithm

M. Azarbad, A. Ebrahimzadeh, A. Babajani-Feremi
{"title":"Brain tissue segmentation using an unsupervised clustering technique based on PSO algorithm","authors":"M. Azarbad, A. Ebrahimzadeh, A. Babajani-Feremi","doi":"10.1109/ICBME.2010.5704938","DOIUrl":null,"url":null,"abstract":"Image thresholding is an important technique for image processing and pattern recognition. Several thresholding techniques have been proposed in the literature. In this paper for segmentation of magnetic resonance images, a novel method using a combination of the multilevel thresholding algorithm and the hierarchical evolutionary algorithm (HEA) is proposed. The HEA can be viewed as a variant of conventional genetic algorithms. The proposed technique is based on the participle swarm optimization (PSO) and, in fact, is an unsupervised clustering method based on an automatic multilevel thresholding approach. One advantage of the proposed method is that the number of clusters in the given image does not need to be known in advance. We evaluate and validate performance of the proposed method using simulation studies. The simulation results show that the accuracy of the proposed method is about 96%.","PeriodicalId":377764,"journal":{"name":"2010 17th Iranian Conference of Biomedical Engineering (ICBME)","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 17th Iranian Conference of Biomedical Engineering (ICBME)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICBME.2010.5704938","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

Image thresholding is an important technique for image processing and pattern recognition. Several thresholding techniques have been proposed in the literature. In this paper for segmentation of magnetic resonance images, a novel method using a combination of the multilevel thresholding algorithm and the hierarchical evolutionary algorithm (HEA) is proposed. The HEA can be viewed as a variant of conventional genetic algorithms. The proposed technique is based on the participle swarm optimization (PSO) and, in fact, is an unsupervised clustering method based on an automatic multilevel thresholding approach. One advantage of the proposed method is that the number of clusters in the given image does not need to be known in advance. We evaluate and validate performance of the proposed method using simulation studies. The simulation results show that the accuracy of the proposed method is about 96%.
基于粒子群算法的无监督聚类脑组织分割
图像阈值分割是图像处理和模式识别的重要技术。在文献中提出了几种阈值处理技术。针对磁共振图像的分割问题,提出了一种多级阈值分割算法与层次进化算法相结合的分割方法。HEA可以看作是传统遗传算法的一种变体。该方法基于分词群算法(PSO),实际上是一种基于自动多级阈值法的无监督聚类方法。该方法的一个优点是不需要事先知道给定图像中的聚类数量。我们通过仿真研究来评估和验证所提出方法的性能。仿真结果表明,该方法的识别精度约为96%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信