Search Results Clustering without External Resources

Chris Staff, J. Azzopardi, Colin J. Layfield, D. Mercieca
{"title":"Search Results Clustering without External Resources","authors":"Chris Staff, J. Azzopardi, Colin J. Layfield, D. Mercieca","doi":"10.1109/DEXA.2015.67","DOIUrl":null,"url":null,"abstract":"Our unsupervised Search Results Clustering (SRC) system partitions into clusters the top-n results returned by a search engine. We present the results of experiments with our SRC system that performs incremental clustering on document titles and snippets only and does not use external resources, yet which outperforms the best performers to date on the SemEval-2013 Task 11 gold standard. We include Latent Semantic Analysis (LSA) as an optional step, using the snippets themselves as the background corpus. We demonstrate that better results are achieved by leaving the query terms out of the clustering process, and that currently, the version without LSA outperforms the version with LSA.","PeriodicalId":239815,"journal":{"name":"2015 26th International Workshop on Database and Expert Systems Applications (DEXA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 26th International Workshop on Database and Expert Systems Applications (DEXA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DEXA.2015.67","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Our unsupervised Search Results Clustering (SRC) system partitions into clusters the top-n results returned by a search engine. We present the results of experiments with our SRC system that performs incremental clustering on document titles and snippets only and does not use external resources, yet which outperforms the best performers to date on the SemEval-2013 Task 11 gold standard. We include Latent Semantic Analysis (LSA) as an optional step, using the snippets themselves as the background corpus. We demonstrate that better results are achieved by leaving the query terms out of the clustering process, and that currently, the version without LSA outperforms the version with LSA.
无外部资源的搜索结果聚类
我们的无监督搜索结果集群(SRC)系统将搜索引擎返回的前n个结果划分为集群。我们展示了我们的SRC系统的实验结果,该系统只对文档标题和片段执行增量聚类,不使用外部资源,但它在SemEval-2013 Task 11金标准上的表现优于迄今为止最好的系统。我们将潜在语义分析(LSA)作为可选步骤,使用片段本身作为背景语料库。我们证明,将查询项排除在聚类过程之外可以获得更好的结果,并且目前,不使用LSA的版本优于使用LSA的版本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信