{"title":"Statistical diagnosis of unmodeled systematic timing effects","authors":"P. Bastani, N. Callegari, Li-C. Wang, M. Abadir","doi":"10.1145/1391469.1391566","DOIUrl":null,"url":null,"abstract":"Explaining the mismatch between predicted timing behavior from modeling and simulation, and the observed timing behavior measured on silicon chips can be very challenging. Given a list of potential sources, the mismatch can be the aggregate result caused by some of them both individually and collectively, resulting in a very large search space. Furthermore, observed data are always corrupted by some unknown statistical random noises. To overcome both challenges, this paper proposes a statistical diagnosis framework that formulates the diagnosis problem as a regression learning problem. In this diagnosis framework, the objective is to rank a set of features corresponding to the list of potential sources of concern. The rank is based on measured silicon path delay data such that a feature inducing a larger unexpected timing deviation is ranked higher. Experimental results are presented to explain the learning method. Diagnosis effectiveness will be demonstrated through benchmark experiments and on an industrial design.","PeriodicalId":412696,"journal":{"name":"2008 45th ACM/IEEE Design Automation Conference","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 45th ACM/IEEE Design Automation Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1391469.1391566","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21
Abstract
Explaining the mismatch between predicted timing behavior from modeling and simulation, and the observed timing behavior measured on silicon chips can be very challenging. Given a list of potential sources, the mismatch can be the aggregate result caused by some of them both individually and collectively, resulting in a very large search space. Furthermore, observed data are always corrupted by some unknown statistical random noises. To overcome both challenges, this paper proposes a statistical diagnosis framework that formulates the diagnosis problem as a regression learning problem. In this diagnosis framework, the objective is to rank a set of features corresponding to the list of potential sources of concern. The rank is based on measured silicon path delay data such that a feature inducing a larger unexpected timing deviation is ranked higher. Experimental results are presented to explain the learning method. Diagnosis effectiveness will be demonstrated through benchmark experiments and on an industrial design.