Generalized predictive control based on particle swarm optimization for linear/nonlinear process with constraints

Zenghui Wang, Yanxia Sun
{"title":"Generalized predictive control based on particle swarm optimization for linear/nonlinear process with constraints","authors":"Zenghui Wang, Yanxia Sun","doi":"10.1109/CINC.2010.5643834","DOIUrl":null,"url":null,"abstract":"This paper presents an intelligent generalized predictive controller (GPC) based on particle swarm optimization (PSO) for linear or nonlinear process with constraints. We propose several constraints for the plants from the engineering point of view and the cost function is also simplified. No complicated mathematics is used which originated from the characteristics of PSO. This method is easy to be used to control the plants with linear or/and nonlinear constraints. Numerical simulations are used to show the performance of this control technique for linear and nonlinear processes, respectively. In the first simulation, the control signal is computed based on an adaptive linear model. In the second simulation, the proposed method is based on a fixed neural network model for a nonlinear plant. Both of them show that the proposed control scheme can guarantee a good control performance.","PeriodicalId":227004,"journal":{"name":"2010 Second International Conference on Computational Intelligence and Natural Computing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Second International Conference on Computational Intelligence and Natural Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CINC.2010.5643834","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

This paper presents an intelligent generalized predictive controller (GPC) based on particle swarm optimization (PSO) for linear or nonlinear process with constraints. We propose several constraints for the plants from the engineering point of view and the cost function is also simplified. No complicated mathematics is used which originated from the characteristics of PSO. This method is easy to be used to control the plants with linear or/and nonlinear constraints. Numerical simulations are used to show the performance of this control technique for linear and nonlinear processes, respectively. In the first simulation, the control signal is computed based on an adaptive linear model. In the second simulation, the proposed method is based on a fixed neural network model for a nonlinear plant. Both of them show that the proposed control scheme can guarantee a good control performance.
基于粒子群优化的线性/非线性约束过程广义预测控制
针对具有约束的线性或非线性过程,提出了一种基于粒子群算法的智能广义预测控制器(GPC)。我们从工程的角度提出了几个约束条件,并简化了成本函数。由于粒子群算法的特点,没有使用复杂的数学运算。该方法易于用于具有线性或/或非线性约束的对象的控制。数值仿真分别证明了该控制技术对线性和非线性过程的控制效果。在第一个仿真中,控制信号是基于自适应线性模型计算的。在第二次仿真中,提出的方法是基于非线性对象的固定神经网络模型。结果表明,所提出的控制方案能够保证良好的控制性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信